Suppr超能文献

[无可用内容]

[Not Available].

作者信息

Mlika Mona, Zorgati Mohamed Majdi, Makhlouf Aymen, Mezni Faouzi

机构信息

Department of pathology,Trauma and Major Burn Center Ben Arous.

Faculty of medicine of Tunis, University of Tunis El Manar. Tunisia.

出版信息

Tunis Med. 2024 Sep 5;102(9):513-520. doi: 10.62438/tunismed.v102i9.4954.

Abstract

INTRODUCTION

The grading of glial tumors is based on morphological and sometimes on molecular features. Many markers have been assessed in order to grade the glial tumours without a real consensus. Some authors reported that SRSF1, a spiling factor, presents an expression correlated to the tumours grades.

AIM

In this study, we aimed to assess the utility of the SRSF1 into the grading of gliomas based on its immunohistochemical expression.

METHODS

The authors conducted a meta-analysis under the PRISMA guidelines during a 10-year-period (2013-2023). The Meta-Disc software 5.4 (free version) was used. Q test and I2 statistics were carried out to explore the heterogeneity among studies. Meta-regression was performed in case of significant heterogeneity. Publication bias was assessed using the funnel plot test and the Egger's test (free version JASP).

RESULTS

According to the inclusion criteria, 4 studies from 193 articles were included. The pooled SEN, SPE and DOR accounted respectively for 0.592, 0.565 and 1.852. The AUC was estimated to 0.558 suggesting a bad diagnostic accuracy. The heterogeneity in the pooled SEN and SPE was statistically significant. The meta-regression analysis focusing on the technique used, the clones, the dilution, the interpretation technique revealed no covariate factors (P>0.05).

CONCLUSION

Even if this meta-analysis highlighted the absence of a real diagnostic utility of the SRSF1 in grading the glial tumours, the heterogeneity revealed reinforces the need for more prospective studies performed according to the quality assessment criteria.

摘要

引言

胶质肿瘤的分级基于形态学特征,有时也基于分子特征。为了对胶质肿瘤进行分级,人们评估了许多标志物,但尚未达成真正的共识。一些作者报告称,剪接因子SRSF1的表达与肿瘤分级相关。

目的

在本研究中,我们旨在根据SRSF1的免疫组化表达评估其在胶质瘤分级中的效用。

方法

作者在PRISMA指南下进行了为期10年(2013 - 2023年)的荟萃分析。使用了Meta-Disc软件5.4(免费版)。进行Q检验和I²统计以探讨研究间的异质性。若存在显著异质性,则进行Meta回归分析。使用漏斗图检验和Egger检验(免费版JASP)评估发表偏倚。

结果

根据纳入标准,从193篇文章中纳入了4项研究。合并的敏感性(SEN)、特异性(SPE)和诊断比值比(DOR)分别为0.592、0.565和1.852。曲线下面积(AUC)估计为0.558,表明诊断准确性较差。合并的SEN和SPE中的异质性具有统计学意义。针对所使用的技术、克隆、稀释度、解读技术进行的Meta回归分析未发现协变量因素(P>0.05)。

结论

即使这项荟萃分析强调了SRSF1在胶质肿瘤分级中缺乏真正的诊断效用,但所揭示的异质性强化了根据质量评估标准进行更多前瞻性研究的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cfa/11459235/45f67ebc1c2d/capture1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验