Department of Neuroscience, Baylor College of Medicine, Houston, United States.
Department of Integrative Physiology, Baylor College of Medicine, Houston, United States.
Elife. 2024 Sep 17;12:RP88673. doi: 10.7554/eLife.88673.
Central noradrenergic (NA) neurons are key constituents of the respiratory homeostatic network. NA dysfunction is implicated in several developmental respiratory disorders including Congenital Central Hyperventilation Syndrome (CCHS), Sudden Infant Death Syndrome (SIDS), and Rett Syndrome. The current unchallenged paradigm in the field, supported by multiple studies, is that glutamate co-transmission in subsets of central NA neurons plays a role in breathing control. If true, NA-glutamate co-transmission may also be mechanistically important in respiratory disorders. However, the requirement of NA-derived glutamate in breathing has not been directly tested and the extent of glutamate co-transmission in the central NA system remains uncharacterized. Therefore, we fully characterized the cumulative fate maps and acute adult expression patterns of all three vesicular glutamate transporters ( (Vglut1), (Vglut2), and (Vglut3)) in NA neurons, identifying a novel, dynamic expression pattern for Vglut2 and an undescribed co-expression domain for Vglut3 in the NA system. In contrast to our initial hypothesis that NA-derived glutamate is required to breathing, our functional studies showed that loss of Vglut2 throughout the NA system failed to alter breathing or metabolism under room air, hypercapnia, or hypoxia in unrestrained and unanesthetized mice. These data demonstrate that Vglut2-based glutamatergic signaling within the central NA system is not required for normal baseline breathing and hypercapnic, hypoxic chemosensory reflexes. These outcomes challenge the current understanding of central NA neurons in the control of breathing and suggests that glutamate may not be a critical target to understand NA neuron dysfunction in respiratory diseases.
中枢去甲肾上腺素能(NA)神经元是呼吸稳态网络的关键组成部分。NA 功能障碍与几种发育性呼吸障碍有关,包括先天性中枢过度通气综合征(CCHS)、婴儿猝死综合征(SIDS)和雷特综合征。目前,该领域的一个未被挑战的范式是,中枢 NA 神经元中的谷氨酸共传递在呼吸控制中发挥作用,这一范式得到了多项研究的支持。如果这是真的,那么 NA-谷氨酸共传递在呼吸障碍中也可能具有重要的机制作用。然而,NA 衍生的谷氨酸在呼吸中的作用尚未得到直接测试,中枢 NA 系统中谷氨酸共传递的程度仍不清楚。因此,我们充分描述了所有三种囊泡谷氨酸转运体((Vglut1)、(Vglut2)和(Vglut3))在 NA 神经元中的累积命运图谱和急性成年表达模式,确定了 Vglut2 的一种新的、动态的表达模式,以及 NA 系统中 Vglut3 的一个未描述的共表达域。与我们最初的假设即 NA 衍生的谷氨酸是呼吸所必需的相反,我们的功能研究表明,在不受约束和未麻醉的小鼠中,整个 NA 系统中 Vglut2 的缺失并没有改变呼吸或代谢在常氧、高碳酸血症或低氧环境下的变化。这些数据表明,中枢 NA 系统中基于 Vglut2 的谷氨酸能信号传递对于正常的基础呼吸和高碳酸血症、低氧化学感觉反射不是必需的。这些结果挑战了目前对中枢 NA 神经元在呼吸控制中的理解,并表明谷氨酸可能不是理解呼吸疾病中 NA 神经元功能障碍的关键靶点。