Liu Yu, Bineva-Todd Ganka, Meek Richard W, Mazo Laura, Piniello Beatriz, Moroz Olga, Burnap Sean A, Begum Nadima, Ohara André, Roustan Chloe, Tomita Sara, Kjaer Svend, Polizzi Karen, Struwe Weston B, Rovira Carme, Davies Gideon J, Schumann Benjamin
Department of Chemistry, Imperial College London, London W12 0BZ, U.K.
Chemical Glycobiology Laboratory, The Francis Crick Institute, London NW1 1AT, U.K.
J Am Chem Soc. 2024 Oct 2;146(39):26707-26718. doi: 10.1021/jacs.4c05955. Epub 2024 Sep 17.
Correct elaboration of N-linked glycans in the secretory pathway of human cells is essential in physiology. Early N-glycan biosynthesis follows an assembly line principle before undergoing crucial elaboration points that feature the sequential incorporation of the sugar -acetylglucosamine (GlcNAc). The activity of GlcNAc transferase V (MGAT5) primes the biosynthesis of an N-glycan antenna that is heavily upregulated in cancer. Still, the functional relevance and substrate choice of MGAT5 are ill-defined. Here, we employ protein engineering to develop a bioorthogonal substrate analog for the activity of MGAT5. Chemoenzymatic synthesis is used to produce a collection of nucleotide-sugar analogs with bulky, bioorthogonal acylamide side chains. We find that WT-MGAT5 displays considerable activity toward such substrate analogues. Protein engineering yields an MGAT5 variant that loses activity against the native nucleotide sugar and increases activity toward a 4-azidobutyramide-containing substrate analogue. By such restriction of substrate specificity, we show that the orthogonal enzyme-substrate pair is suitable to bioorthogonally tag glycoproteins. Through X-ray crystallography and molecular dynamics simulations, we establish the structural basis of MGAT5 engineering, informing the design rules for bioorthogonal precision chemical tools.
人类细胞分泌途径中N-连接聚糖的正确修饰在生理学中至关重要。早期N-聚糖生物合成遵循流水线原则,然后经历关键的修饰点,这些修饰点的特征是依次掺入糖 -N-乙酰葡糖胺(GlcNAc)。GlcNAc转移酶V(MGAT5)的活性启动了在癌症中大量上调的N-聚糖天线的生物合成。然而,MGAT5的功能相关性和底物选择仍不明确。在这里,我们利用蛋白质工程开发了一种用于MGAT5活性的生物正交底物类似物。化学酶法合成用于生产一系列带有庞大生物正交酰胺侧链的核苷酸糖类似物。我们发现野生型MGAT5对此类底物类似物表现出相当的活性。蛋白质工程产生了一种MGAT5变体,该变体对天然核苷酸糖失去活性,并增加了对含4-叠氮基丁酰胺底物类似物的活性。通过这种底物特异性的限制,我们表明正交酶-底物对适用于对糖蛋白进行生物正交标记。通过X射线晶体学和分子动力学模拟,我们建立了MGAT5工程的结构基础,为生物正交精密化学工具的设计规则提供了依据。