Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
Adv Exp Med Biol. 2024;1460:97-129. doi: 10.1007/978-3-031-63657-8_4.
The ratio of free fatty acid (FFA) turnover decreases significantly with the expansion of white adipose tissue. Adipose tissue and dietary saturated fatty acid levels significantly correlate with an increase in fat cell size and number. The G0/G1 switch gene 2 increases lipid content in adipocytes and promotes adipocyte hypertrophy through the restriction of triglyceride (triacylglycerol: TAG) turnover. Hypoxia in obese adipose tissue due to hypertrophic adipocytes results in excess deposition of extracellular matrix (ECM) components. Cluster of differentiation (CD) 44, as the main receptor of the extracellular matrix component regulates cell-cell and cell-matrix interactions including diet-induced insulin resistance. Excess TAGs, sterols, and sterol esters are surrounded by the phospholipid monolayer surface and form lipid droplets (LDs). Once LDs are formed, they grow up because of the excessive amount of intracellular FFA stored and reach a final size. The ratio of FFA turnover/lipolysis decreases significantly with increases in the degree of obesity. Dysfunctional adipose tissue is unable to expand further to store excess dietary lipids, increased fluxes of plasma FFAs lead to ectopic fatty acid deposition and lipotoxicity. Reduced neo-adipogenesis and dysfunctional lipid-overloaded adipocytes are hallmarks of hypertrophic obesity linked to insulin resistance. Obesity-associated adipocyte death exhibits feature of necrosis-like programmed cell death. Adipocyte death is a prerequisite for the transition from hypertrophic to hyperplastic obesity. Increased adipocyte number in obesity has life-long effects on white adipose tissue mass. The positive correlation between the adipose tissue volume and magnetic resonance imaging proton density fat fraction estimation is used for characterization of the obesity phenotype, as well as the risk stratification and selection of appropriate treatment strategies. In obese patients with type 2 diabetes, visceral adipocytes exposed to chronic/intermittent hyperglycemia develop a new microRNAs' (miRNAs') expression pattern. Visceral preadipocytes memorize the effect of hyperglycemia via changes in miRNAs' expression profile and contribute to the progression of diabetic phenotype. Nonsteroidal anti-inflammatory drugs, metformin, and statins can be beneficial in treating the local or systemic consequences of white adipose tissue inflammation. Rapamycin inhibits leptin-induced LD formation. Collectively, in this chapter, the concept of adipose tissue remodeling in response to adipocyte death or adipogenesis, and the complexity of LD interactions with the other cellular organelles are reviewed. Furthermore, clinical perspective of fat cell turnover in obesity is also debated.
游离脂肪酸(FFA)周转率的比例随着白色脂肪组织的扩张而显著下降。脂肪组织和饮食中的饱和脂肪酸水平与脂肪细胞大小和数量的增加显著相关。G0/G1 开关基因 2 通过限制甘油三酯(三酰基甘油:TAG)周转率增加脂肪细胞中的脂质含量,并促进脂肪细胞肥大。肥胖脂肪组织中的缺氧由于肥大的脂肪细胞而导致细胞外基质(ECM)成分的过度沉积。分化群(CD)44 作为细胞外基质成分的主要受体,调节细胞-细胞和细胞-基质相互作用,包括饮食诱导的胰岛素抵抗。过量的 TAG、甾醇和甾醇酯被磷脂单层表面包围并形成脂质滴(LDs)。一旦形成 LD,由于储存的细胞内 FFA 过多,它们会继续生长,直到达到最终大小。FFA 周转率/脂肪分解的比例随着肥胖程度的增加而显著降低。功能失调的脂肪组织无法进一步扩张以储存过多的膳食脂肪,血浆 FFA 通量的增加导致异位脂肪酸沉积和脂肪毒性。新生脂肪形成减少和功能失调的脂质超负荷脂肪细胞是与胰岛素抵抗相关的肥大性肥胖的标志。肥胖相关的脂肪细胞死亡表现出坏死样程序性细胞死亡的特征。脂肪细胞死亡是从肥大性肥胖向增生性肥胖转变的前提。肥胖时脂肪细胞数量的增加对白色脂肪组织质量有终身影响。脂肪组织体积与磁共振成像质子密度脂肪分数估计之间的正相关关系用于肥胖表型的特征描述,以及风险分层和选择适当的治疗策略。在 2 型糖尿病肥胖患者中,暴露于慢性/间歇性高血糖的内脏脂肪细胞会发展出新的 microRNAs(miRNAs)表达模式。内脏前脂肪细胞通过 miRNA 表达谱的变化来记忆高血糖的影响,并有助于糖尿病表型的进展。非甾体抗炎药、二甲双胍和他汀类药物可有益于治疗白色脂肪组织炎症的局部或全身后果。雷帕霉素抑制瘦素诱导的 LD 形成。总的来说,在这一章中,我们回顾了脂肪组织对脂肪细胞死亡或脂肪生成的反应性重塑的概念,以及 LD 与其他细胞细胞器相互作用的复杂性。此外,还讨论了肥胖中脂肪细胞周转率的临床观点。