Suppr超能文献

磁性金属氧化物纳米颗粒生物降解过程中脱铁铁蛋白的物理化学变化。

Physicochemical Changes of Apoferritin Protein during Biodegradation of Magnetic Metal Oxide Nanoparticles.

机构信息

Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.

Department of Materials Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.

出版信息

ACS Appl Mater Interfaces. 2024 Oct 2;16(39):53299-53310. doi: 10.1021/acsami.4c12269. Epub 2024 Sep 17.

Abstract

The biodegradation of therapeutic magnetic-oxide nanoparticles (MONPs) in the human body raises concerns about their lifespan, functionality, and health risks. Interactions between apoferritin proteins and MONPs in the spleen, liver, and inflammatory macrophages significantly accelerate nanoparticle degradation, releasing metal ions taken up by apoferritin. This can alter the protein's biological structure and properties, potentially causing health hazards. This study examines changes in apoferritin's shape, electrical surface potential (ESP), and protein-core composition after incubation with cobalt-ferrite (CoFeO) oxide nanoparticles. Using atomic force microscopy (AFM) and scanning Kelvin probe force microscopy (SKPFM), we observed changes in the topography and ESP distribution in apoferritin nanofilms over time. After 48 h, the characteristic apoferritin hole (∼1.35 nm) vanished, and the protein's height increased from ∼3.5 to ∼7.5 nm due to hole filling. This resulted in a significant ESP increase on the filled-apoferritin surface, attributed to the formation of a heterogeneous chemical composition and crystal structure (γ-FeO, FeO, CoO, CoOOH, FeOOH, and CoO). These changes enhance electrostatic interactions and surface charge between the protein and the AFM tip. This approach aids in predicting and improving the MONP lifespan while reducing their toxicity and preventing apoferritin deformation and dysfunction.

摘要

治疗用磁性氧化物纳米颗粒(MONPs)在人体内的生物降解引起了人们对其寿命、功能和健康风险的关注。在脾脏、肝脏和炎症性巨噬细胞中,脱铁铁蛋白蛋白与 MONPs 的相互作用显著加速了纳米颗粒的降解,释放出被脱铁铁蛋白摄取的金属离子。这可能会改变蛋白质的生物结构和特性,从而对健康造成危害。本研究考察了在与钴铁氧体(CoFeO)氧化物纳米颗粒孵育后脱铁铁蛋白形状、表面等电点(ESP)和蛋白核组成的变化。利用原子力显微镜(AFM)和扫描开尔文探针力显微镜(SKPFM),我们观察到脱铁铁蛋白纳米膜的形貌和 ESP 分布随时间的变化。孵育 48 小时后,特征性的脱铁铁蛋白孔(约 1.35nm)消失,由于孔的填充,蛋白的高度从约 3.5nm 增加到约 7.5nm。这导致填充的脱铁铁蛋白表面上的 ESP 显著增加,这归因于形成不均匀的化学组成和晶体结构(γ-FeO、FeO、CoO、CoOOH、FeOOH 和 CoO)。这些变化增强了蛋白质与 AFM 探针之间的静电相互作用和表面电荷。这种方法有助于预测和延长 MONP 的寿命,同时降低其毒性,并防止脱铁铁蛋白变形和功能障碍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验