Suppr超能文献

使用机器学习评估社会医学因素对角膜供体恢复的影响

Evaluation of Sociomedical Factors on Corneal Donor Recovery Using Machine Learning.

作者信息

Munir Wuqaas M, Munir Saleha Z

机构信息

Department of Ophthalmology, University of Maryland School of Medicine, Baltimore, Maryland, USA.

出版信息

Ophthalmic Epidemiol. 2025 Aug;32(4):382-389. doi: 10.1080/09286586.2024.2399350. Epub 2024 Sep 17.

Abstract

PURPOSE

To evaluate co-morbid sociomedical conditions affecting corneal donor endothelial cell density and transplant suitability.

METHOD(S): Corneal donor transplant information was collected from the CorneaGen eye bank between June 1, 2012 and June 30, 2016. A natural language processing algorithm was applied to generate co-morbid sociomedical conditions for each donor. Variables of importance were identified using four machine learning models (random forest, Glmnet, Earth, nnet), for the outcomes of transplant suitability and endothelial cell density. SHAP (SHapley Additive exPlanations) values were generated, with beeswarm and box plots to visualize the contribution of each feature to the models.

RESULTS

With a total of 23,522 unique donors, natural language processing generated 30,573 indices, which were reduced to 41 most common co-morbid sociomedical conditions. For transplant suitability, hypertension ranked the top overall variable of importance in two models. Hypertension, chronic obstructive pulmonary disease, history of smoking, and alcohol use appeared consistently in the top variables of importance. By SHAP feature importance, hypertension (0.042), alcohol use (0.017), ventilation of donor (0.011), and history of smoking (0.010) contributed the most to the transplant suitability model. For endothelial cell density, hypertension was the sociomedical condition of highest importance in three models. SHAP scores were highest among the sociomedical conditions of hypertension (0.037), alcohol use (0.013), myocardial infarction (0.012), and history of smoking (0.011).

CONCLUSION

In a large cohort of corneal donor eyes, hypertension was identified as the most common contributor to machine learning models examining sociomedical conditions for corneal donor transplant suitability and endothelial cell density.

摘要

目的

评估影响角膜供体内皮细胞密度和移植适用性的合并社会医学状况。

方法

收集2012年6月1日至2016年6月30日期间来自CorneaGen眼库的角膜供体移植信息。应用自然语言处理算法为每个供体生成合并社会医学状况。使用四种机器学习模型(随机森林、Glmnet、Earth、nnet)确定移植适用性和内皮细胞密度结果的重要变量。生成SHAP(Shapley加性解释)值,并使用蜂群图和箱线图来可视化每个特征对模型的贡献。

结果

共有23522名独特的供体,自然语言处理生成了30573个指标,这些指标被缩减为41种最常见的合并社会医学状况。对于移植适用性,高血压在两个模型中总体上是最重要的变量。高血压、慢性阻塞性肺疾病、吸烟史和饮酒在重要变量中一直名列前茅。根据SHAP特征重要性,高血压(0.042)、饮酒(0.017)、供体通气(0.011)和吸烟史(0.010)对移植适用性模型的贡献最大。对于内皮细胞密度,高血压在三个模型中是最重要的社会医学状况。在社会医学状况中,高血压(0.037)、饮酒(0.013)、心肌梗死(0.012)和吸烟史(0.011)的SHAP分数最高。

结论

在一大组角膜供体眼中,高血压被确定为机器学习模型中检查角膜供体移植适用性和内皮细胞密度的社会医学状况的最常见因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验