Suppr超能文献

用于预测接受铂类化疗的高级别浆液性卵巢癌患者预后的瘤内和瘤周放射组学

Intratumoral and Peritumoral Radiomics for Predicting the Prognosis of High-grade Serous Ovarian Cancer Patients Receiving Platinum-Based Chemotherapy.

作者信息

Huang Xiaoyu, Huang Yong, Liu Kexin, Zhang Fenglin, Zhu Zhou, Xu Kai, Li Ping

机构信息

Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China (X.H., K.L., F.Z., P.L.).

Department of Medical Oncology, The Second People's Hospital of Hefei, Hefei, China (Y.H.).

出版信息

Acad Radiol. 2025 Feb;32(2):877-887. doi: 10.1016/j.acra.2024.09.001. Epub 2024 Sep 16.

Abstract

RATIONALE AND OBJECTIVES

This study aimed to develop a deep learning (DL) prognostic model to evaluate the significance of intra- and peritumoral radiomics in predicting outcomes for high-grade serous ovarian cancer (HGSOC) patients receiving platinum-based chemotherapy.

MATERIALS AND METHODS

A DL model was trained and validated on retrospectively collected unenhanced computed tomography (CT) scans from 474 patients at two institutions, which were divided into a training set (N = 362), an internal test set (N = 86), and an external test set (N = 26). The model incorporated tumor segmentation and peritumoral region analysis, using various input configurations: original tumor regions of interest (ROIs), ROI subregions, and ROIs expanded by 1 and 3 pixels. Model performance was assessed via hazard ratios (HRs) and receiver operating characteristic (ROC) curves. Patients were stratified into high- and low-risk groups on the basis of the training set's optimal cutoff value.

RESULTS

Among the input configurations, the model using an ROI with a 1-pixel peritumoral expansion achieved the highest predictive accuracy. The DL model exhibited robust performance for predicting progression-free survival, with HRs of 3.41 (95% CI: 2.85, 4.08; P < 0.001) in training set, 1.14 (95% CI: 1.03, 1.26; P = 0.012) in internal test set, and 1.32 (95% CI: 1.07, 1.63; P = 0.011) in external test set. KM survival analysis revealed significant differences between the high-risk and low-risk groups (P < 0.05).

CONCLUSION

The DL model effectively predicts survival outcomes in HGSOC patients receiving platinum-based chemotherapy, offering valuable insights for prognostic assessment and personalized treatment planning.

摘要

原理与目的

本研究旨在开发一种深度学习(DL)预后模型,以评估瘤内和瘤周放射组学在预测接受铂类化疗的高级别浆液性卵巢癌(HGSOC)患者预后中的意义。

材料与方法

在两个机构对474例患者回顾性收集的平扫计算机断层扫描(CT)图像上训练并验证DL模型,这些患者被分为训练集(N = 362)、内部测试集(N = 86)和外部测试集(N = 26)。该模型结合肿瘤分割和瘤周区域分析,使用了各种输入配置:原始肿瘤感兴趣区域(ROI)、ROI子区域以及向外扩展1像素和3像素的ROI。通过风险比(HR)和受试者操作特征(ROC)曲线评估模型性能。根据训练集的最佳临界值将患者分为高风险和低风险组。

结果

在输入配置中,使用瘤周扩展1像素的ROI的模型预测准确性最高。DL模型在预测无进展生存期方面表现出强大性能,训练集中HR为3.41(95%CI:2.85,4.08;P < 0.001),内部测试集中为1.14(95%CI:1.03,1.26;P = 0.0l2),外部测试集中为1.32(95%CI:1.07,1.63;P = 0.011)。Kaplan-Meier生存分析显示高风险组和低风险组之间存在显著差异(P < 0.05)。

结论

DL模型能有效预测接受铂类化疗的HGSOC患者的生存结局,为预后评估和个性化治疗方案提供有价值的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验