Ghobrini Amina, Boukabcha Hocine, Ami Ismahane
Department of Physics, Faculty of Sciences, University M'hamed Bougara of Boumerdes, Route de la Gare Ferroviaire, Boumerdes, 35000, Boumerdes, Algeria.
Laboratory of Coatings, Materials and Environment (LRME), University M'hamed Bougara of Boumerdes, Avenue de l'indépendance, Boumerdes, 35000, Boumerdes, Algeria.
J Mol Model. 2024 Sep 18;30(10):340. doi: 10.1007/s00894-024-06139-0.
The diatomic molecules of potassium is widely used in industrial chemicals and alternative energy. Besides that, is very useful for researching molecular interactions and energy states, especially in the context of quantum chemistry and spectroscopy. In the present work, a newly proposed diatomic potential model within relativistic and non-relativistic quantum mechanics has been considered, to obtain corresponding energy eigenvalues and related normalized eigenfunctions.
The Dirac equation has been solved for an arbitrary spin-orbit quantum number using the path integral technique with the -deformed generalized Pöschl-Teller potential . By including a Pekeris-type approximation to handle the centrifugal factor, it was possible to obtain the spin and pseudospin-symmetric solution of the relativistic energy eigenvalues and wave equation. To assess the correctness of this work, Maple software was used to present some numerical findings for various values of and . With the constraint , it was shown that in the situation of pseudospin symmetry, only bound states exist with negative energy. In the non-relativistic limits, the non-relativistic ro-vibrational energy expression of the diatomic molecule is derived from the relativistic energy equation under spin symmetry. Under Varshni conditions, both vibrational and ro-vibrational energies of the molecule were computed and compared with the data. The average absolute percentage deviations from the data obtained for the potassium molecule are . This demonstrates that the model is a very consistent model to study and characterize diatomic molecules.
钾的双原子分子广泛应用于工业化学品和替代能源领域。除此之外,它对于研究分子相互作用和能量状态非常有用,特别是在量子化学和光谱学的背景下。在本工作中,考虑了相对论和非相对论量子力学中一个新提出的双原子势模型,以获得相应的能量本征值和相关的归一化本征函数。
利用路径积分技术,针对任意自旋轨道量子数,求解了狄拉克方程,该方程采用了具有(\xi)变形广义普施尔 - 特勒势(V(x))。通过包含一个佩克里斯型近似来处理离心因子,得以获得相对论能量本征值和波动方程的自旋和赝自旋对称解。为评估本工作的正确性,使用Maple软件给出了不同(\xi)和(m)值的一些数值结果。在约束条件(\xi\gt0)下,表明在赝自旋对称情况下,仅存在负能量的束缚态。在非相对论极限下,双原子分子的非相对论转动 - 振动能量表达式由自旋对称下的相对论能量方程导出。在瓦尔什尼条件下,计算了钾分子的振动和转动 - 振动能量,并与实验数据进行了比较。钾分子从实验数据获得的平均绝对百分比偏差为(X%)。这表明该(\xi)模型是研究和表征双原子分子的一个非常一致的模型。