NeuroSpin, CEA, Paris-Saclay University, Bât 145, CEA-Saclay Center, 91191, Gif-sur-Yvette, France.
Human Brain Research Center, Kyoto University, Kyoto, Japan.
Jpn J Radiol. 2024 Dec;42(12):1357-1371. doi: 10.1007/s11604-024-01642-z. Epub 2024 Sep 18.
Diffusion MRI was introduced in 1985, showing how the diffusive motion of molecules, especially water, could be spatially encoded with MRI to produce images revealing the underlying structure of biologic tissues at a microscopic scale. Diffusion is one of several Intravoxel Incoherent Motions (IVIM) accessible to MRI together with blood microcirculation. Diffusion imaging first revolutionized the management of acute cerebral ischemia by allowing diagnosis at an acute stage when therapies can still work, saving the outcomes of many patients. Since then, the field of diffusion imaging has expanded to the whole body, with broad applications in both clinical and research settings, providing insights into tissue integrity, structural and functional abnormalities from the hindered diffusive movement of water molecules in tissues. Diffusion imaging is particularly used to manage many neurologic disorders and in oncology for detecting and classifying cancer lesions, as well as monitoring treatment response at an early stage. The second major impact of diffusion imaging concerns the wiring of the brain (Diffusion Tensor Imaging, DTI), allowing to obtain from the anisotropic movement of water molecules in the brain white-matter images in 3 dimensions of the brain connections making up the Connectome. DTI has opened up new avenues of clinical diagnosis and research to investigate brain diseases, neurogenesis and aging, with a rapidly extending field of application in psychiatry, revealing how mental illnesses could be seen as Connectome spacetime disorders. Adding that water diffusion is closely associated to neuronal activity, as shown from diffusion fMRI, one may consider that diffusion MRI is ideally suited to investigate both brain structure and function. This article retraces the early days and milestones of diffusion MRI which spawned over 40 years, showing how diffusion MRI emerged and expanded in the research and clinical fields, up to become a pillar of modern clinical imaging.
弥散磁共振成像(Diffusion MRI)于 1985 年问世,它展示了如何通过磁共振成像对分子(尤其是水)的扩散运动进行空间编码,以生成图像,从而揭示生物组织的微观结构。弥散是磁共振成像可获取的几种体素内不相干运动(Intravoxel Incoherent Motions,IVIM)之一,与血液微循环一起。弥散成像是急性脑缺血治疗的一个重大突破,它可以在治疗仍然有效的急性阶段进行诊断,挽救了许多患者的生命。从那时起,弥散成像领域已经扩展到全身,在临床和研究环境中都有广泛的应用,为了解组织完整性、结构和功能异常提供了深入的见解,这些异常是由于水分子在组织中的受阻扩散运动造成的。弥散成像特别用于管理许多神经疾病,并在肿瘤学中用于检测和分类癌症病变,以及在早期阶段监测治疗反应。弥散成像的第二个主要影响是对大脑连接的研究(弥散张量成像,Diffusion Tensor Imaging,DTI),它可以通过大脑白质中水分子的各向异性运动获取大脑连接的三维图像,形成连接组(Connectome)。DTI 为临床诊断和研究开辟了新的途径,以研究大脑疾病、神经发生和衰老,其在精神病学中的应用领域迅速扩展,揭示了如何将精神疾病视为连接组时空障碍。此外,弥散 fMRI 表明,水的扩散与神经元活动密切相关,因此可以认为弥散 MRI 非常适合研究大脑结构和功能。本文回顾了弥散磁共振成像的早期历史和里程碑,这些历史和里程碑在 40 多年的时间里不断涌现,展示了弥散磁共振成像如何在研究和临床领域中出现和扩展,直至成为现代临床成像的支柱。