Nambiar Mila, Bee Yong Mong, Chan Yu En, Ho Mien Ivan, Guretno Feri, Carmody David, Lee Phong Ching, Chia Sing Yi, Salim Nur Nasyitah Mohamed, Krishnaswamy Pavitra
Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
Department of Endocrinology, Singapore General Hospital, Singapore, Singapore.
NPJ Digit Med. 2024 Sep 17;7(1):254. doi: 10.1038/s41746-024-01230-5.
Pharmacotherapy guidelines for type 2 diabetes (T2D) emphasize patient-centered care, but applying this approach effectively in outpatient practice remains challenging. Data-driven treatment optimization approaches could enhance individualized T2D management, but current approaches cannot account for drug-specific and dose-dependent variations in safety and efficacy. We developed and evaluated an AI Drug mix and dose Advisor (AIDA) for glycemic management, using electronic medical records from 107,854 T2D patients in the SingHealth Diabetes Registry. Given a patient's medical profile, AIDA leverages a predict-then-optimize approach to identify the minimal drug mix and dose changes required to optimize glycemic control, subject to clinical knowledge-based guidelines. On unseen data from large internal, external, and temporal validation sets, AIDA recommendations were estimated to improve post-visit glycated hemoglobin (HbA) by an average of 0.40-0.68% over standard of care (P < 0.0001). In qualitative evaluations on 60 diverse cases by a panel of three endocrinologists, AIDA recommendations were mostly rated as reasonable and precise. Finally, AIDA's ability to account for drug-dose specifics offered several advantages over competing methods, including greater consistency with practice preferences and clinical guidelines for practical but effective options, indication-based treatments, and renal dosing. As AIDA provides drug-dose recommendations to improve outcomes for individual T2D patients, it could be used for clinical decision support at point-of-care, especially in resource-limited settings.
2型糖尿病(T2D)的药物治疗指南强调以患者为中心的护理,但在门诊实践中有效应用这种方法仍然具有挑战性。数据驱动的治疗优化方法可以加强T2D的个体化管理,但目前的方法无法考虑药物特异性和剂量依赖性的安全性和疗效差异。我们利用新加坡健康集团糖尿病登记处107854例T2D患者的电子病历,开发并评估了一种用于血糖管理的人工智能药物组合和剂量顾问(AIDA)。给定患者的医疗档案,AIDA采用先预测后优化的方法,根据基于临床知识的指南,确定优化血糖控制所需的最小药物组合和剂量变化。在来自大型内部、外部和时间验证集的未见数据上,与标准治疗相比,AIDA的建议估计可使就诊后糖化血红蛋白(HbA)平均提高0.40-0.68%(P<0.0001)。在由三名内分泌专家组成的小组对60个不同病例的定性评估中,AIDA的建议大多被评为合理且精确。最后,AIDA考虑药物剂量细节的能力比其他竞争方法具有几个优势,包括在实用但有效的选择、基于适应症的治疗和肾脏给药方面与实践偏好和临床指南的一致性更高。由于AIDA提供药物剂量建议以改善个体T2D患者的治疗效果,它可用于即时医疗的临床决策支持,特别是在资源有限的环境中。