Suppr超能文献

使用局部集合卡尔曼滤波器同化地基全球导航卫星系统数据。

Assimilation of ground-based GNSS data using a local ensemble Kalman filter.

作者信息

Shao Changliang, Nerger Lars

机构信息

CMA Research Centre On Meteorological Observation Engineering Technology, CMA Meteorological Observation Centre, Beijing, China.

Alfred-Wegener-Institut, Helmholtz-Zentrum Für Polar- Und Meeresforschung (AWI), Bremerhaven, Germany.

出版信息

Sci Rep. 2024 Sep 17;14(1):21682. doi: 10.1038/s41598-024-72915-w.

Abstract

Tropical cyclones become increasingly nonlinear and dynamically unstable in high-resolution models. The initial conditions are typically sub-optimal, leaving scope to improve the accuracy of forecasts with improved data assimilation. Simultaneously, the lack of real ground-based GNSS observations over the ocean poses significant challenges when evaluating the assimilation results in oceanic regions. In this study, an Observation System Simulation Experiment is carried out based on a tropical cyclone case. Assimilation experiments using the WRF-PDAF framework are conducted. Conventional and GNSS observation operators are implemented. A diverse array of synthetic observations, encompassing temperature (T), wind components (U and V), precipitable water (PW), and zenith total delay (ZTD), are assimilated utilizing the Local Error-Subspace Transform Kalman filter (LESTKF). The findings highlight the improvement in forecast accuracy achieved through the assimilation process over the ocean. Multiple observation types further improve the forecast accuracy. The study underscores the crucial role of GNSS data assimilation techniques. The assimilation of GNSS data presents potential for advancing weather forecasting capabilities. Thus, the construction of ground-based GNSS observation stations over the ocean is promising.

摘要

在高分辨率模型中,热带气旋变得越来越非线性且动态不稳定。初始条件通常并非最优,这就为通过改进数据同化来提高预报准确性留下了空间。同时,在评估海洋区域的同化结果时,海洋上空缺乏实际的地面全球导航卫星系统(GNSS)观测数据带来了重大挑战。在本研究中,基于一个热带气旋案例进行了观测系统模拟实验。使用WRF - PDAF框架进行了同化实验。实现了常规观测算子和GNSS观测算子。利用局部误差子空间变换卡尔曼滤波器(LESTKF)同化了包括温度(T)、风分量(U和V)、可降水量(PW)和天顶总延迟(ZTD)在内的各种合成观测数据。研究结果突出了通过海洋上空的同化过程所实现的预报准确性的提高。多种观测类型进一步提高了预报准确性。该研究强调了GNSS数据同化技术的关键作用。GNSS数据的同化具有提升天气预报能力的潜力。因此,在海洋上空建设地面GNSS观测站是很有前景的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aee8/11408591/520baab63227/41598_2024_72915_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验