Suppr超能文献

一种基于机器学习的腰椎滑脱症脊柱X光自动诊断量化系统。

A machine learning based quantification system for automated diagnosis of lumbar spondylolisthesis on spinal X-rays.

作者信息

Liu Shanshan, Guo Chenyi, Zhao Yuting, Zhang Cheng, Yue Lihao, Yao Ruijie, Lan Qifeng, Zhou Xingyu, Zhao Bo, Wu Ji, Li Weishi, Xu Nanfang

机构信息

Department of Orthopaedics, Peking University Third Hospital, Beijing, China.

Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.

出版信息

Heliyon. 2024 Sep 4;10(17):e37418. doi: 10.1016/j.heliyon.2024.e37418. eCollection 2024 Sep 15.

Abstract

The automated diagnosis of lumbar spondylolisthesis lacks standardized criteria and the diagnostic of lumbar spondylolisthesis itself inherently relies on the subjective judgment of experts, resulting in a lack of standardized criteria. The objective of this study is to develop a novel, fully automated diagnostic system for lumbar spondylolisthesis. A two-stage system was developed, consisting of a Mask R-CNN with Prime Sample Attention (PISA) for vertebral segmentation in the first stage and a Light Gradient Boosting Machine (LGBM) for spondylolisthesis diagnosis in the second stage. The training data was developed by a total of 936 X-ray images including neutral, extension, and flexion lateral radiographs retrospectively gathered from 312 patients diagnosed with lumbar spondylolisthesis between January 2021 and March 2022. From a model perspective, there were a total of 4680 vertebrae, of which 1056 (22.6 %) were spondylolisthesis and the rest were normal. The Bbox mAP50, Bbox mAP75, Segm mAP50, and Segm mAP75 of Mask R-CNN with PISA were 0.9852, 0.9179, 0.9741, and 0.8957, respectively. The Accuracy, AUC, Recall, Precision, and F1-score of LGBM were 0.9660, 0.9843, 0.9020, 0.9020, and 0.9020, respectively. This study presents a robust system for the diagnosis of lumbar spondylolisthesis, providing accurate detection, classification, and localization of lumbar spondylolisthesis.

摘要

腰椎滑脱的自动诊断缺乏标准化标准,而腰椎滑脱的诊断本身就固有地依赖于专家的主观判断,导致缺乏标准化标准。本研究的目的是开发一种用于腰椎滑脱的新型全自动诊断系统。开发了一个两阶段系统,第一阶段由带有优先样本注意力(PISA)的Mask R-CNN进行椎体分割,第二阶段由轻梯度提升机(LGBM)进行腰椎滑脱诊断。训练数据由总共936张X射线图像组成,这些图像包括从2021年1月至2022年3月期间诊断为腰椎滑脱的312例患者中回顾性收集的中立位、伸展位和屈曲位侧位X线片。从模型角度来看,共有4680个椎体,其中1056个(22.6%)为腰椎滑脱,其余为正常椎体。带有PISA的Mask R-CNN的边界框平均精度均值(mAP50)、边界框平均精度均值(mAP75)、分割平均精度均值(Segm mAP50)和分割平均精度均值(Segm mAP75)分别为0.9852、0.9179、0.9741和0.8957。LGBM的准确率、曲线下面积(AUC)、召回率、精确率和F1分数分别为0.9660、0.9843、0.9020、0.9020和0.9020。本研究提出了一个用于腰椎滑脱诊断的强大系统,可对腰椎滑脱进行准确的检测、分类和定位。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验