Thomson Trevor J, Hu X Joan, Nosyk Bohdan
Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, British Columbia, Canada.
Fred Hutchinson Cancer Center, Biostatistics, Bioinformatics and Epidemiology Program, Seattle, WA, USA.
J Appl Stat. 2024 Feb 9;51(13):2652-2671. doi: 10.1080/02664763.2024.2313459. eCollection 2024.
Administrative databases have become an increasingly popular data source for population-based health research. We explore how mortality risk is associated with some health service utilization process via linked administrative data. A generalized Cox regression model is proposed using a time-dependent stratification variable to summarize lifetime service utilization. Recognizing the service utilization over time as an internal covariate in the survival analysis, conventional likelihood methods are inapplicable. We present an estimating function based procedure for estimating model parameters, and provide a testing procedure for updating the stratification levels. The proposed approach is examined both asymptotically and numerically via simulation. We motivate and illustrate the proposed approach using an on-going program pertaining to opioid agonist treatment (OAT) management for individuals identified with opioid use disorders. Our analysis of the OAT data indicates that the OAT effect on mortality risk decreases in successive OAT attempts, in which two risk classes based on an individual's treatment episode number are established: one with 1-3 OAT episodes, and the other with 4+ OAT episodes.
行政数据库已成为基于人群的健康研究中越来越受欢迎的数据源。我们通过链接的行政数据探索死亡风险如何与一些卫生服务利用过程相关联。提出了一种广义Cox回归模型,使用时间依赖分层变量来总结终身服务利用情况。由于将随时间的服务利用视为生存分析中的内部协变量,传统的似然方法不适用。我们提出了一种基于估计函数的程序来估计模型参数,并提供了一种更新分层水平的检验程序。通过模拟对所提出的方法进行了渐近和数值检验。我们通过一个正在进行的针对阿片类药物使用障碍患者的阿片类激动剂治疗(OAT)管理项目来激发并说明所提出的方法。我们对OAT数据的分析表明,OAT对死亡风险的影响在连续的OAT尝试中降低,其中根据个体的治疗次数建立了两个风险类别:一个是1 - 3次OAT发作,另一个是4次及以上OAT发作。