Pfennings Kai, Hoffmann Tom K, Hitzegrad Jan, Paul Maike, Goseberg Nils, Wehrmann Achim
Marine Research Department Senckenberg am Meer Wilhelmshaven Germany.
Ludwig Franzius Institute of Hydraulic, Estuarine and Coastal Engineering Leibniz University Hannover Hannover Germany.
Ecol Evol. 2024 Sep 17;14(9):e70238. doi: 10.1002/ece3.70238. eCollection 2024 Sep.
Oysters are ecosystem engineering species building reef-like biogenic structures in temperate shallow water environments, serving as biodiversity hotspots. Recently, also their ecosystem services such as fish nursery, pollutants sink and self-sustaining coastal protection mechanisms came into a research focus. In light of accelerated sea level rise and increasing environmental dynamics, a determination of vertical growth rates of these biosedimentary structures is paramount in assessing their resilience. This study embarked on a comprehensive survey of seasonal vertical reef growth rates using terrestrial laser scanning and related population dynamics of two intertidal reefs built by the non-native oyster in the Wadden Sea. We quantified median reef growth at 19.8 mm yr for the Kaiserbalje reef and 17.5 mm yr for the Nordland reef. Additionally, we tested the hypothesis that the seasonal variations in reef growth rates correspond to the local population dynamics, mainly the parameters of shell length and abundance which mirror delayed effects from previous spawning events. Shell growth rates were 0.03-0.06 mm d in winter and 0.10-0.16 mm d in summer, mean oyster abundance from autumn 2019 to spring 2022 was 627 ± 43 ind. m and 338 ± 87 ind. m at the Kaiserbalje and Nordland reefs respectively. Minor reef growth in the topmost reef area reflects an emerging equilibrium of the vertical reef position to actual sea level. Our findings are in accordance with growth of natural reefs on the US East Coast, indicating potential resilience to actual and predicted sea level rise scenarios. Moreover, understanding local hydro-morphodynamic feedback linked to sea level rise will be vital in predicting the three-dimensional stability of these biosedimentary structures and habitats.
牡蛎是生态系统工程物种,在温带浅水环境中构建类似礁石的生物成因结构,是生物多样性热点地区。最近,它们的生态系统服务功能,如鱼类育苗、污染物汇和自我维持的海岸保护机制,也成为了研究重点。鉴于海平面加速上升和环境动态变化加剧,确定这些生物沉积结构的垂直生长速率对于评估其恢复力至关重要。本研究采用地面激光扫描技术,对瓦登海两个由非本地牡蛎建造的潮间带礁石的季节性垂直礁石生长速率及相关种群动态进行了全面调查。我们量化了凯泽巴尔耶礁石的中位礁石生长速率为每年19.8毫米,诺德兰礁石为每年17.5毫米。此外,我们检验了以下假设:礁石生长速率的季节性变化与当地种群动态相对应,主要是壳长和丰度参数,这些参数反映了先前产卵事件的延迟影响。冬季壳生长速率为0.03 - 0.06毫米/天,夏季为0.10 - 0.16毫米/天,2019年秋季至2022年春季,凯泽巴尔耶礁石和诺德兰礁石的平均牡蛎丰度分别为627 ± 43 个/平方米和338 ± 87个/平方米。最顶部礁石区域的微小礁石生长反映了礁石垂直位置与实际海平面之间正在形成的平衡。我们的研究结果与美国东海岸天然礁石的生长情况一致,表明对当前和预测的海平面上升情景具有潜在恢复力。此外,了解与海平面上升相关的当地水动力地貌反馈对于预测这些生物沉积结构和栖息地的三维稳定性至关重要。