Suppr超能文献

建立用于评估 PaCO 改变时脑血管自动调节功能的仔猪模型。

Development of a piglet model for cerebrovascular autoregulation assessment with altered PaCO.

作者信息

Dietvorst Sofie, Desloovere Veerle, Meyfroidt Geert, Depreitere Bart

机构信息

Department of Neurosurgery, University Hospitals Leuven, Belgium.

Research Group Experimental Neurosurgery and Neuroanatomy, KULeuven, Belgium.

出版信息

Brain Spine. 2024 May 7;4:102833. doi: 10.1016/j.bas.2024.102833. eCollection 2024.

Abstract

INTRODUCTION

Cerebrovascular autoregulation (CA) capacity can be impaired in the aftermath of acute brain injuries. Altered physiological states, such as hypo- and hypercapnia, affect CA. Although these effects have been demonstrated in several animal experiments, the exact effect of PaCO₂ on the plateau of cerebral blood flow (CBF) across the spectrum of arterial blood pressures has not been fully disclosed.

RESEARCH QUESTION

The aim was to explore pial vasodynamics in response to changing PaCO₂ in a porcine cranial window model, as preparation for an experimental setup in which the CBF plateau position is investigated under different PaCO₂ conditions.

MATERIAL AND METHODS

Five piglets were brought under anesthesia, intubated, ventilated and instrumented with a cranial window through which pial arteriolar diameters could be microscopically observed. By changing ventilation to either hyper- or hypoventilation we were able to investigate a range of PaCO2 from 25 till 90 mmHg.

RESULTS

Altering the respiratory rate to manipulate PaCO₂ by ventilation appeared to be feasible and reliable.

DISCUSSION AND CONCLUSION

We found that ETCO₂ reliably represents PaCO₂ in our model. Pial arteriolar diameter changes followed the direction of PaCO₂ changes, but the effect of PaCO₂ on the diameters was not linear. Only in the hypercapnia setting did we observe a clear and consistent vasodilation of the pial arterioles.

摘要

引言

急性脑损伤后脑血管自动调节(CA)能力可能受损。诸如低碳酸血症和高碳酸血症等生理状态的改变会影响CA。尽管这些影响已在多项动物实验中得到证实,但动脉血二氧化碳分压(PaCO₂)对整个动脉血压范围内脑血流量(CBF)平台期的确切影响尚未完全揭示。

研究问题

目的是在猪颅窗模型中探索软脑膜血管动力学对PaCO₂变化的反应,为在不同PaCO₂条件下研究CBF平台期位置的实验设置做准备。

材料与方法

五只仔猪接受麻醉、插管、通气,并安装颅窗,通过该颅窗可在显微镜下观察软脑膜小动脉直径。通过将通气改为过度通气或通气不足,我们能够研究25至90 mmHg范围内的一系列PaCO₂。

结果

通过通气改变呼吸频率来操纵PaCO₂似乎是可行且可靠的。

讨论与结论

我们发现呼气末二氧化碳分压(ETCO₂)在我们的模型中可靠地代表PaCO₂。软脑膜小动脉直径的变化与PaCO₂变化方向一致,但PaCO₂对直径的影响不是线性的。只有在高碳酸血症情况下,我们才观察到软脑膜小动脉明显且一致的血管舒张。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fd5/11406070/e7f6d06c50d4/gr1.jpg

相似文献

1
Development of a piglet model for cerebrovascular autoregulation assessment with altered PaCO.
Brain Spine. 2024 May 7;4:102833. doi: 10.1016/j.bas.2024.102833. eCollection 2024.
2
Influence of hypercapnic vasodilation on cerebrovascular autoregulation and pial arteriolar bed resistance in piglets.
J Appl Physiol (1985). 2008 Jul;105(1):152-7. doi: 10.1152/japplphysiol.00988.2007. Epub 2008 Apr 24.
3
Cerebrovascular responses to therapeutic dose of indomethacin in newborn pigs.
Pediatr Res. 1999 Apr;45(4 Pt 1):582-7. doi: 10.1203/00006450-199904010-00019.
5
Does prolonged severe hypercapnia interfere with normal cerebrovascular function in piglets?
Pediatr Res. 2018 Aug;84(2):290-295. doi: 10.1038/s41390-018-0061-5. Epub 2018 May 28.
6
Selective inhibitors differentially affect cyclooxygenase-dependent pial arteriolar responses in newborn pigs.
Pediatr Res. 2005 Jun;57(6):853-7. doi: 10.1203/01.PDR.0000161415.62776.0A. Epub 2005 Apr 21.
7
Pial vessel caliber and cerebral blood flow during hemorrhage and hypercapnia in the rabbit.
Am J Physiol. 1984 Jul;247(1 Pt 2):H40-51. doi: 10.1152/ajpheart.1984.247.1.H40.
8
Acetazolamide induces indomethacin and ischaemia-sensitive pial arteriolar vasodilation in the piglet.
Acta Paediatr. 2008 Mar;97(3):280-4. doi: 10.1111/j.1651-2227.2007.00615.x.
9
Altered cerebrovascular responsiveness to N-methyl-D-aspartate after asphyxia in piglets.
Am J Physiol. 1993 Jul;265(1 Pt 2):H389-94. doi: 10.1152/ajpheart.1993.265.1.H389.
10
Differential Hemodynamic Response of Pial Arterioles Contributes to a Quadriphasic Cerebral Autoregulation Physiology.
J Am Heart Assoc. 2022 Jan 4;11(1):e022943. doi: 10.1161/JAHA.121.022943. Epub 2021 Dec 22.

本文引用的文献

1
Acid-base balance and cerebrovascular regulation.
J Physiol. 2021 Dec;599(24):5337-5359. doi: 10.1113/JP281517. Epub 2021 Nov 26.
2
Revisiting the neurovascular unit.
Nat Neurosci. 2021 Sep;24(9):1198-1209. doi: 10.1038/s41593-021-00904-7. Epub 2021 Aug 5.
3
Role of haemoglobin oxygen affinity for oxygen uptake during exercise.
J Physiol. 2020 Aug;598(16):3531-3532. doi: 10.1113/JP280054. Epub 2020 Jun 24.
4
5
Interaction between the respiratory system and cerebral blood flow regulation.
J Appl Physiol (1985). 2019 Nov 1;127(5):1197-1205. doi: 10.1152/japplphysiol.00057.2019. Epub 2019 Mar 28.
6
Smooth muscle cells of intracranial vessels: from development to disease.
Cardiovasc Res. 2018 Mar 15;114(4):501-512. doi: 10.1093/cvr/cvy002.
7
8
Regulation of cerebral autoregulation by carbon dioxide.
Anesthesiology. 2015 Jan;122(1):196-205. doi: 10.1097/ALN.0000000000000506.
9
Physiological approach to assessment of acid-base disturbances.
N Engl J Med. 2014 Oct 9;371(15):1434-45. doi: 10.1056/NEJMra1003327.
10
THAM for control of ICP.
Neurocrit Care. 2014 Oct;21(2):332-44. doi: 10.1007/s12028-014-9978-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验