Suppr超能文献

将阿尔茨海默病血浆生物标志物与磁共振成像、心血管、遗传学及生活方式指标相结合能否改善认知预测?

Can integration of Alzheimer's plasma biomarkers with MRI, cardiovascular, genetics, and lifestyle measures improve cognition prediction?

作者信息

Gebre Robel K, Graff-Radford Jonathan, Ramanan Vijay K, Raghavan Sheelakumari, Hofrenning Ekaterina I, Przybelski Scott A, Nguyen Aivi T, Lesnick Timothy G, Gunter Jeffrey L, Algeciras-Schimnich Alicia, Knopman David S, Machulda Mary M, Vassilaki Maria, Lowe Val J, Jack Clifford R, Petersen Ronald C, Vemuri Prashanthi

机构信息

Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA.

Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA.

出版信息

Brain Commun. 2024 Sep 4;6(5):fcae300. doi: 10.1093/braincomms/fcae300. eCollection 2024.

Abstract

There is increasing interest in Alzheimer's disease related plasma biomarkers due to their accessibility and scalability. We hypothesized that integrating plasma biomarkers with other commonly used and available participant data (MRI, cardiovascular factors, lifestyle, genetics) using machine learning (ML) models can improve individual prediction of cognitive outcomes. Further, our goal was to evaluate the heterogeneity of these predictors across different age strata. This longitudinal study included 1185 participants from the Mayo Clinic Study of Aging who had complete plasma analyte work-up at baseline. We used the Quanterix Simoa immunoassay to measure neurofilament light, Aβ and Aβ (used as Aβ/Aβ ratio), glial fibrillary acidic protein, and phosphorylated tau 181 (p-tau181). Participants' brain health was evaluated through gray and white matter structural MRIs. The study also considered cardiovascular factors (hyperlipidemia, hypertension, stroke, diabetes, chronic kidney disease), lifestyle factors (area deprivation index, body mass index, cognitive and physical activities), and genetic factors (, single nucleotide polymorphisms, and polygenic risk scores). An ML model was developed to predict cognitive outcomes at baseline and decline (slope). Three models were created: a base model with groups of risk factors as predictors, an enhanced model included socio-demographics, and a final enhanced model by incorporating plasma and socio-demographics into the base models. Models were explained for three age strata: younger than 65 years, 65-80 years, and older than 80 years, and further divided based on amyloid positivity status. Regardless of amyloid status the plasma biomarkers showed comparable performance (² = 0.15) to MRI (² = 0.18) and cardiovascular measures (² = 0.10) when predicting cognitive decline. Inclusion of cardiovascular or MRI measures with plasma in the presence of socio-demographic improved cognitive decline prediction (² = 0.26 and 0.27). For amyloid positive individuals Aβ/Aβ, glial fibrillary acidic protein and p-tau181 were the top predictors of cognitive decline while Aβ/Aβ was prominent for amyloid negative participants across all age groups. Socio-demographics explained a large portion of the variance in the amyloid negative individuals while the plasma biomarkers predominantly explained the variance in amyloid positive individuals (21% to 37% from the younger to the older age group). Plasma biomarkers performed similarly to MRI and cardiovascular measures when predicting cognitive outcomes and combining them with either measure resulted in better performance. Top predictors were heterogeneous between cross-sectional and longitudinal cognition models, across age groups, and amyloid status. Multimodal approaches will enhance the usefulness of plasma biomarkers through careful considerations of a study population's socio-demographics, brain and cardiovascular health.

摘要

由于阿尔茨海默病相关血浆生物标志物具有可及性和可扩展性,人们对其兴趣与日俱增。我们假设,使用机器学习(ML)模型将血浆生物标志物与其他常用且可得的参与者数据(MRI、心血管因素、生活方式、遗传学)相结合,可以改善对认知结果的个体预测。此外,我们的目标是评估这些预测指标在不同年龄层中的异质性。这项纵向研究纳入了梅奥诊所衰老研究中的1185名参与者,他们在基线时完成了血浆分析物检测。我们使用Quanterix Simoa免疫分析法测量神经丝轻链、Aβ和Aβ(用作Aβ/Aβ比值)、胶质纤维酸性蛋白以及磷酸化tau 181(p-tau181)。通过灰质和白质结构MRI评估参与者的脑健康状况。该研究还考虑了心血管因素(高脂血症、高血压、中风、糖尿病、慢性肾病)、生活方式因素(地区贫困指数、体重指数、认知和身体活动)以及遗传因素(单核苷酸多态性和多基因风险评分)。开发了一个ML模型来预测基线时的认知结果和衰退(斜率)。创建了三个模型:一个以风险因素组作为预测指标的基础模型,一个纳入社会人口统计学因素的增强模型,以及一个将血浆和社会人口统计学因素纳入基础模型的最终增强模型。针对三个年龄层(65岁以下、65 - 80岁、80岁以上)对模型进行了解释,并根据淀粉样蛋白阳性状态进一步划分。无论淀粉样蛋白状态如何,在预测认知衰退时,血浆生物标志物的表现(² = 0.15)与MRI(² = 0.18)和心血管指标(² = 0.10)相当。在存在社会人口统计学因素的情况下,将心血管指标或MRI与血浆指标相结合可改善对认知衰退的预测(² = 0.26和0.27)。对于淀粉样蛋白阳性个体,Aβ/Aβ、胶质纤维酸性蛋白和p-tau181是认知衰退的主要预测指标,而在所有年龄组的淀粉样蛋白阴性参与者中,Aβ/Aβ最为突出。社会人口统计学因素解释了淀粉样蛋白阴性个体中很大一部分方差,而血浆生物标志物主要解释了淀粉样蛋白阳性个体中的方差(从年轻到老年组为21%至37%)。在预测认知结果时,血浆生物标志物的表现与MRI和心血管指标相似,将它们与任何一种指标相结合都会有更好的表现。在横断面和纵向认知模型之间、不同年龄组以及淀粉样蛋白状态之间,主要预测指标存在异质性。多模态方法将通过仔细考虑研究人群的社会人口统计学、脑和心血管健康状况,提高血浆生物标志物的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6730/11406552/1b0771a5dd9b/fcae300_ga.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验