Suppr超能文献

利用微流控自适应通道和多路复用荧光显微镜快速鉴定细菌分离株。

Rapid identification of bacterial isolates using microfluidic adaptive channels and multiplexed fluorescence microscopy.

机构信息

Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.

Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.

出版信息

Lab Chip. 2024 Oct 9;24(20):4843-4858. doi: 10.1039/d4lc00325j.

Abstract

We demonstrate the rapid capture, enrichment, and identification of bacterial pathogens using Adaptive Channel Bacterial Capture (ACBC) devices. Using controlled tuning of device backpressure in polydimethylsiloxane (PDMS) devices, we enable the controlled formation of capture regions capable of trapping bacteria from low cell density samples with near 100% capture efficiency. The technical demands to prepare such devices are much lower compared to conventional methods for bacterial trapping and can be achieved with simple benchtop fabrication methods. We demonstrate the capture and identification of seven species of bacteria with bacterial concentrations lower than 1000 cells per mL, including common Gram-negative and Gram-positive pathogens such as and . We further demonstrate that species identification of the trapped bacteria can be undertaken in the order of one-hour using multiplexed 16S rRNA-FISH with identification accuracies of 70-98% with unsupervised classification methods across 7 species of bacteria. Finally, by using the bacterial capture capabilities of the ACBC chip with an ultra-rapid antimicrobial susceptibility testing method employing fluorescence imaging and convolutional neural network (CNN) classification, we demonstrate that we can use the ACBC chip as an imaging flow cytometer that can predict the antibiotic susceptibility of cells after identification.

摘要

我们使用自适应通道细菌捕获(ACBC)设备展示了对细菌病原体的快速捕获、富集和鉴定。通过在聚二甲基硅氧烷(PDMS)设备中对设备背压进行控制调谐,我们能够实现具有捕获区域的受控形成,该捕获区域能够从低细胞密度样品中捕获近 100%的细菌,具有接近 100%的捕获效率。与传统的细菌捕获方法相比,制备这种设备的技术要求要低得多,并且可以通过简单的台式制造方法来实现。我们展示了从低于 1000 个细胞/毫升的细菌浓度中捕获和鉴定七种细菌的能力,包括常见的革兰氏阴性和革兰氏阳性病原体,如 和 。我们进一步证明,使用多重 16S rRNA-FISH 可以在一个小时内对捕获的细菌进行物种鉴定,使用无监督分类方法对 7 种细菌的鉴定准确率为 70-98%。最后,通过使用 ACBC 芯片的细菌捕获能力与采用荧光成像和卷积神经网络(CNN)分类的超快速抗菌药敏测试方法相结合,我们证明我们可以将 ACBC 芯片用作成像流式细胞仪,在鉴定后可以预测 细胞对抗生素的敏感性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5506/11409657/92a123cd70f8/d4lc00325j-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验