文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

配体到金属电荷转移(LMCT)催化:利用简单的铈催化剂实现惰性碳氢键和碳碳键的选择性官能团化

Ligand-to-Metal Charge Transfer (LMCT) Catalysis: Harnessing Simple Cerium Catalysts for Selective Functionalization of Inert C-H and C-C Bonds.

作者信息

An Qing, Chang Liang, Pan Hui, Zuo Zhiwei

机构信息

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.

School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.

出版信息

Acc Chem Res. 2024 Oct 1;57(19):2915-2927. doi: 10.1021/acs.accounts.4c00510. Epub 2024 Sep 18.


DOI:10.1021/acs.accounts.4c00510
PMID:39291873
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11669090/
Abstract

ConspectusChemists have long pursued harnessing light energy and photoexcitation processes for synthetic transformations. Ligand-to-metal charge transfer (LMCT) in high-valent metal complexes often triggers bond homolysis, generating oxidized ligand-centered radicals and reduced metal centers. While photoinduced oxidative activations can be enabled, this process, typically seen as photochemical decomposition, remains underexplored in catalytic applications. To mitigate decomposition during LMCT excitation, we developed a catalytic cycle integrating in situ coordination, LMCT, and ligand homolysis to activate ligated alcohols transiently into alkoxy radicals. This catalytic approach leverages Ce(IV) LMCT excitation and highly reactive alkoxy radical intermediates for selective functionalizations of C(sp)-H and C(sp)-C(sp) bonds under mild conditions. In this Account, we discuss these advancements, highlighting the practical utility of cost-effective cerium salts as catalysts and their potential to develop innovative transformations, addressing long-standing synthetic challenges.Selective functionalization of chemically inert C(sp)-H bonds has long posed a significant challenge. We first detail our research using LMCT-enabled alkoxy radical-mediated hydrogen atom transfer (HAT) processes for selective C(sp)-H functionalizations. Using readily available CeCl, we established a general protocol for employing free alcohols in the Barton reaction. By integrating LMCT and HAT catalysis, we introduced a selective photocatalytic strategy for functionalizing feedstock alkanes, converting gaseous hydrocarbons into valuable products. Employing simple cerium salts like Ce(OTf) and CeCl, we achieved selective C-H amination of methane and ethane at ambient temperature, achieving turnover numbers of 2900 and 9700, respectively. This catalytic manifold has been further exploited to address the site-selectivity challenge in the C-H functionalization of linear alkanes. The use of methanol as a cocatalyst enabled preferential functionalization of the most electron-rich sites, achieving a high intrinsic selectivity over 12:1 of secondary vs primary sites in pentane and hexane.Next, we discuss the catalytic utilization of alkoxy-radical-mediated β-scission, a frequently encountered side reaction in HAT transformations, for selective cleavage and functionalization of C-C bonds. The versatility of the LMCT catalytic platform facilitates the generation of alkoxy radicals from various free alcohols. In our initial demonstration of LMCT-enabled C(sp)-C(sp) bond activation, we developed a cerium-catalyzed ring-opening and amination of cycloalkanols, providing an effective protocol for cleaving unstrained C-C bonds. This strategy has been successfully applied to various radical cross-coupling processes, leading to innovative transformations such as ring expansions of cycloalkanols, dehydroxymethylative alkylation, amination, alkenylation, and ring expansions of cyclic ketones. These results highlight the synthetic potential of employing LMCT-mediated β-scission and ubiquitous C-C bonds as unconventional functional handles for generating molecular complexity.Lastly, we delve into our mechanistic investigations. Beyond the catalytic application of Ce(IV) LMCT in various transformations, we have undertaken comprehensive mechanistic studies. These investigations encompass characterization of Ce(IV) alkoxide complexes to elucidate their structures, evaluation of their photoactivity and selectivity in radical generation, and elucidation of kinetic pathways associated with transient LMCT excited states. Our research has revealed ultrafast bond homolysis, back electron transfer, and the selectivity of heteroleptic complexes in homolysis, providing crucial insights for advancing LMCT catalysis.

摘要

概述

长期以来,化学家们一直致力于利用光能和光激发过程进行合成转化。高价金属配合物中的配体到金属电荷转移(LMCT)常常引发键的均裂,产生以配体为中心的氧化自由基和还原态金属中心。虽然可以实现光诱导的氧化活化,但这个通常被视为光化学分解的过程在催化应用中仍未得到充分探索。为了减轻LMCT激发过程中的分解,我们开发了一种催化循环,该循环整合了原位配位、LMCT和配体均裂,以将连接的醇类瞬时活化为烷氧基自由基。这种催化方法利用Ce(IV)的LMCT激发和高活性的烷氧基自由基中间体,在温和条件下对C(sp)-H和C(sp)-C(sp)键进行选择性官能团化。在本综述中,我们讨论了这些进展,强调了具有成本效益的铈盐作为催化剂的实际效用及其开发创新转化的潜力,以应对长期存在的合成挑战。

化学惰性C(sp)-H键的选择性官能团化长期以来一直是一个重大挑战。我们首先详细介绍了我们利用基于LMCT的烷氧基自由基介导的氢原子转移(HAT)过程进行选择性C(sp)-H官能团化的研究。使用易于获得的CeCl,我们建立了在巴顿反应中使用游离醇的通用方案。通过整合LMCT和HAT催化,我们引入了一种选择性光催化策略,用于官能团化原料烷烃,将气态烃转化为有价值的产物。使用简单的铈盐如Ce(OTf)和CeCl,我们在环境温度下实现了甲烷和乙烷的选择性C-H胺化,周转数分别达到2900和9700。这种催化体系已被进一步用于解决直链烷烃C-H官能团化中的位点选择性挑战。使用甲醇作为助催化剂能够优先官能团化电子密度最高的位点,在戊烷和己烷中实现了仲位与伯位超过12:1的高固有选择性。

接下来,我们讨论烷氧基自由基介导的β-断裂在催化中的应用,β-断裂是HAT转化中经常遇到的副反应,用于C-C键的选择性裂解和官能团化。LMCT催化平台的多功能性促进了各种游离醇生成烷氧基自由基。在我们最初展示的基于LMCT的C(sp)-C(sp)键活化中,我们开发了一种铈催化的环烷醇开环和胺化反应,为裂解无张力的C-C键提供了一种有效方案。该策略已成功应用于各种自由基交叉偶联过程,导致了创新的转化,如环烷醇的扩环、脱羟基甲基化烷基化、胺化、烯基化以及环酮的扩环。这些结果突出了利用LMCT介导的β-断裂和普遍存在的C-C键作为非常规官能团处理手段来产生分子复杂性的合成潜力。

最后,我们深入探讨我们的机理研究。除了Ce(IV)的LMCT在各种转化中的催化应用外,我们还进行了全面的机理研究。这些研究包括对Ce(IV)醇盐配合物的表征以阐明其结构,评估其在自由基生成中的光活性和选择性,以及阐明与瞬态LMCT激发态相关的动力学途径。我们的研究揭示了超快的键均裂、反向电子转移以及杂配配合物在均裂中的选择性,为推进LMCT催化提供了关键见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e945/11669090/942f7eb7d400/ar4c00510_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e945/11669090/9032b53c335f/ar4c00510_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e945/11669090/61597ec12917/ar4c00510_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e945/11669090/daca706af4d6/ar4c00510_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e945/11669090/437fcd1a74de/ar4c00510_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e945/11669090/962c9faf437a/ar4c00510_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e945/11669090/4a29b05a65b8/ar4c00510_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e945/11669090/afca7ad7e999/ar4c00510_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e945/11669090/ef27429a6cd9/ar4c00510_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e945/11669090/93018d908b69/ar4c00510_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e945/11669090/7fceca6cc069/ar4c00510_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e945/11669090/942f7eb7d400/ar4c00510_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e945/11669090/9032b53c335f/ar4c00510_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e945/11669090/61597ec12917/ar4c00510_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e945/11669090/daca706af4d6/ar4c00510_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e945/11669090/437fcd1a74de/ar4c00510_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e945/11669090/962c9faf437a/ar4c00510_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e945/11669090/4a29b05a65b8/ar4c00510_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e945/11669090/afca7ad7e999/ar4c00510_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e945/11669090/ef27429a6cd9/ar4c00510_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e945/11669090/93018d908b69/ar4c00510_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e945/11669090/7fceca6cc069/ar4c00510_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e945/11669090/942f7eb7d400/ar4c00510_0011.jpg

相似文献

[1]
Ligand-to-Metal Charge Transfer (LMCT) Catalysis: Harnessing Simple Cerium Catalysts for Selective Functionalization of Inert C-H and C-C Bonds.

Acc Chem Res. 2024-10-1

[2]
Cerium-Catalyzed C-H Functionalizations of Alkanes Utilizing Alcohols as Hydrogen Atom Transfer Agents.

J Am Chem Soc. 2020-3-23

[3]
Identification of Alkoxy Radicals as Hydrogen Atom Transfer Agents in Ce-Catalyzed C-H Functionalization.

J Am Chem Soc. 2023-1-11

[4]
Synergistic LMCT and Ni Catalysis for Methylative Cross-Coupling Using -Butanol: Modulating Radical Pathways via Selective Bond Homolysis.

J Am Chem Soc. 2025-4-30

[5]
Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp)-H Cross-Coupling.

Acc Chem Res. 2021-2-16

[6]
Lanthanide Photocatalysis.

Acc Chem Res. 2018-11-20

[7]
Selective functionalization of methane, ethane, and higher alkanes by cerium photocatalysis.

Science. 2018-7-26

[8]
δ-Selective Functionalization of Alkanols Enabled by Visible-Light-Induced Ligand-to-Metal Charge Transfer.

J Am Chem Soc. 2018-1-30

[9]
A Metal-Organic Framework as a Multiphoton Excitation Regulator for the Activation of Inert C(sp )-H Bonds and Oxygen.

Angew Chem Int Ed Engl. 2022-1-10

[10]
Photoinduced Ligand-to-Metal Charge Transfer (LMCT) of Fe Alkoxide Enabled C-C Bond Cleavage and Amination of Unstrained Cyclic Alcohols.

Org Lett. 2022-1-28

引用本文的文献

[1]
LMCT-driven electron relay unlocks alcohols as tunable reductants for nickel-catalyzed cross-electrophilic couplings.

Nat Commun. 2025-7-4

[2]
Unlocking Chromium Decarboxylative Ligand-to-Metal Charge Transfer: Efficient and Redox-Neutral Allylation of Aldehydes Using Carboxylic Acids.

J Am Chem Soc. 2025-7-2

[3]
Light-Driven C(sp)-C(sp) Bond Functionalizations Enabled by the PCET Activation of Alcohol O-H Bonds.

Acc Chem Res. 2025-7-1

[4]
Dehomologative C-C Borylation of Aldehydes and Alcohols via a Rh-Catalyzed Dehydroformylation-Borylation Relay.

J Am Chem Soc. 2025-5-21

[5]
Catalysis in the Excited State: Bringing Innate Transition Metal Photochemistry into Play.

ACS Catal. 2025-3-5

[6]
Supramolecular assemblies of tetravalent terbium complex units: syntheses, structure, and materials properties.

Chem Sci. 2025-3-11

[7]
Iron-Catalyzed Aerobic Carbonylation of Methane via Ligand-to-Metal Charge Transfer Excitation.

J Am Chem Soc. 2025-1-15

本文引用的文献

[1]
A new era of LMCT: leveraging ligand-to-metal charge transfer excited states for photochemical reactions.

Chem Sci. 2024-4-17

[2]
Alcohols as Substrates in Transition-Metal-Catalyzed Arylation, Alkylation, and Related Reactions.

Chem Rev. 2024-5-8

[3]
Multiplicative enhancement of stereoenrichment by a single catalyst for deracemization of alcohols.

Science. 2023-10-27

[4]
Resurgence and advancement of photochemical hydrogen atom transfer processes in selective alkane functionalizations.

Chem Sci. 2023-5-22

[5]
Identification of Alkoxy Radicals as Hydrogen Atom Transfer Agents in Ce-Catalyzed C-H Functionalization.

J Am Chem Soc. 2023-1-11

[6]
Deconstructive Synthesis of Bridged and Fused Rings via Transition-Metal-Catalyzed "Cut-and-Sew" Reactions of Benzocyclobutenones and Cyclobutanones.

Acc Chem Res. 2022-8-16

[7]
Electrophotochemical Ce-Catalyzed Ring-Opening Functionalization of Cycloalkanols under Redox-Neutral Conditions: Scope and Mechanism.

J Am Chem Soc. 2022-8-3

[8]
Hydrogen Abstraction by Alkoxyl Radicals: Computational Studies of Thermodynamic and Polarity Effects on Reactivities and Selectivities.

J Am Chem Soc. 2022-4-20

[9]
A Metal-Organic Framework as a Multiphoton Excitation Regulator for the Activation of Inert C(sp )-H Bonds and Oxygen.

Angew Chem Int Ed Engl. 2022-1-10

[10]
Temporary or removable directing groups enable activation of unstrained C-C bonds.

Nat Rev Chem. 2020-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索