Suppr超能文献

通过醇O-H键的PCET活化实现光驱动的C(sp)-C(sp)键官能团化

Light-Driven C(sp)-C(sp) Bond Functionalizations Enabled by the PCET Activation of Alcohol O-H Bonds.

作者信息

Thach Danny Q, Knowles Robert R

机构信息

Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.

出版信息

Acc Chem Res. 2025 Jul 1;58(13):2061-2071. doi: 10.1021/acs.accounts.5c00246. Epub 2025 Jun 13.

Abstract

ConspectusMethods that enable the selective functionalization of C-C bonds offer unique opportunities for the skeletal diversification of complex molecules and provide access to unique structures without the need for synthesis. While considerable advances have been made in transition-metal-based approaches, much recent work has focused on alternative strategies for C-C bond cleavage enabled by transient free radicals. In particular, alkoxy radicals derived from simple alcohols are known to significantly destabilize adjacent C-C bonds, enabling spontaneous cleavage to eject a carbon-centered radical and afford carbonyl products via β-fragmentation. While this reactivity has long been recognized, its applications in synthesis have been limited, in part, by the challenges associated with generating the key alkoxy radical intermediates. The high bond dissociation free energies (BDFEs) of aliphatic alcohol O-H bonds (∼105 kcal/mol) preclude direct homolytic activation by hydrogen atom transfer, and most established strategies rely instead on stoichiometric prefunctionalization of the O-H bond. These approaches often further limit the scope of amenable chemistries that can be applied for postcleavage alkyl radical functionalization. Methods that could overcome these constraints have considerable synthetic potential, enabling straightforward access to reconfigured carbon frameworks from an abundant class of starting materials, as well as modular opportunities for radical functionalization. In this Account, we present our efforts toward the development of proton-coupled electron transfer (PCET) as a general mechanism for alkoxy radical generation from simple alcohols. In turn, this advance enabled us to develop a suite of novel methods for editing complex carbon frameworks via the cleavage and functionalization of C(sp)-C(sp) bonds. We first discuss the development of catalytic ring-opening isomerization reactions of cyclic benzylic carbinols to access linear aryl ketone products through a redox-relay approach. In these reactions, single electron oxidation of the substrate arene by an excited-state Ir(III) photocatalyst generates an arene radical cation that serves as an internal oxidant for an intramolecular PCET event, furnishing the alkoxy radical intermediate. This intermediate then undergoes C-C β-scission to provide the isomerized linear ketone products. We next present the discovery of an improved catalytic system for the direct activation of simple aliphatic alcohols. We then apply these chemistries for the light-driven depolymerization of lignin biopolymers, commercial phenoxy resins, hydroxylated polymers, and thiol epoxy thermosets. Notably, many of these redox isomerization reactions are thermodynamically unfavorable, providing isomerization products that are thermodynamically less stable than their corresponding starting materials. We then discuss the application of O-H PCET for the reconfiguration of saturated carbocyclic frameworks to provide expanded and contracted carbocyclic products. Applications of this reconfiguration strategy toward the 1,3-alkyl rearrangement of linear alcohols are also presented. Lastly, we discuss a method for the peripheral-to-core transposition of amine groups of saturated cyclic amino alcohols to access nitrogen-containing heterocyclic products. Taken together, these examples highlight how excited-state PCET can be leveraged for the catalytic generation of high energy -centered radicals for regioselective C-C bond cleavage and enables the direct reconfiguration of complex carbon frameworks.

摘要

概述

能够实现C-C键选择性官能化的方法为复杂分子的骨架多样化提供了独特的机会,并且无需合成即可获得独特的结构。虽然基于过渡金属的方法已经取得了相当大的进展,但最近的许多工作都集中在由瞬态自由基实现C-C键裂解的替代策略上。特别地,已知源自简单醇的烷氧基自由基会显著破坏相邻的C-C键,使其能够自发裂解以排出碳中心自由基,并通过β-碎裂生成羰基产物。虽然这种反应性早已被认识到,但其在合成中的应用受到了一定限制,部分原因是与生成关键的烷氧基自由基中间体相关的挑战。脂肪族醇O-H键的高键解离自由能(BDFEs)(约105 kcal/mol)排除了通过氢原子转移直接进行均裂活化的可能性,并且大多数已确立的策略反而依赖于O-H键的化学计量预官能化方法。这些方法通常进一步限制了可用于裂解后烷基自由基官能化的适用化学范围。能够克服这些限制的方法具有相当大的合成潜力,能够直接从大量的起始原料获得重新构型的碳骨架,以及提供自由基官能化的模块化机会。在本综述中,我们展示了我们在开发质子耦合电子转移(PCET)作为从简单醇生成烷氧基自由基的通用机制方面所做的努力。反过来,这一进展使我们能够开发出一套通过C(sp)-C(sp)键的裂解和官能化来编辑复杂碳骨架的新方法。我们首先讨论了环状苄醇的催化开环异构化反应的发展,通过氧化还原中继方法获得线性芳基酮产物。在这些反应中,激发态Ir(III)光催化剂对底物芳烃进行单电子氧化,生成芳烃自由基阳离子,其作为分子内PCET事件的内部氧化剂,提供烷氧基自由基中间体。然后该中间体进行C-C β-断裂以提供异构化的线性酮产物。接下来,我们展示了一种用于直接活化简单脂肪族醇的改进催化体系的发现。然后,我们将这些化学方法应用于木质素生物聚合物、商业苯氧基树脂、羟基化聚合物和硫醇环氧热固性材料的光驱动解聚。值得注意的是,许多这些氧化还原异构化反应在热力学上是不利的,提供的异构化产物在热力学上比其相应的起始原料更不稳定。然后,我们讨论了O-H PCET在饱和碳环骨架重新构型以提供扩展和收缩的碳环产物方面的应用。还展示了这种重新构型策略在线性醇的1,3-烷基重排中的应用。最后,我们讨论了一种将饱和环状氨基醇的胺基从外围到核心进行转位以获得含氮杂环产物的方法。综上所述,这些例子突出了激发态PCET如何能够用于催化生成高能量的碳中心自由基以进行区域选择性C-C键裂解,并能够直接对复杂碳骨架进行重新构型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验