Suppr超能文献

利用域对齐和原型学习预测患者的临床抗癌药物反应

Predicting Clinical Anticancer Drug Response of Patients by Using Domain Alignment and Prototypical Learning.

作者信息

Peng Wei, Chen Chuyue, Dai Wei, Yu Ning, Wang Jianxin

出版信息

IEEE J Biomed Health Inform. 2025 Feb;29(2):1534-1545. doi: 10.1109/JBHI.2024.3462811. Epub 2025 Feb 10.

Abstract

Anticancer drug response prediction is crucial in developing personalized treatment plans for cancer patients. However, High-quality patient anticancer drug response data are scarce and cell line data and patient data have different distributions, models trained solely on cell line data perform poorly. Some existing methods predict anticancer drug response by transferring knowledge from the cell line domain to the patient domain using transfer learning. However, the robustness of these classifiers is affected by anomalies in the cell line data, and they do not utilize the knowledge in the unlabeled target domain data. To this end, we proposed a model called DAPL to predict patient responses to anticancer drugs. The model extracts domain-invariant features from cell lines and patients by constructing multiple VAEs and extracts drug features using GNNs. These features are then combined for prototypical learning to train a classifier, resulting in better predictions of patient anticancer drug response. We used the cell line datasets CCLE and GDSC as source domains and the patient datasets TCGA and PDTC as target domains and conducted experiments. The results indicate that DAPL shows excellent performance in predicting patient anticancer drug response compared to other state-of-the-art methods.

摘要

抗癌药物反应预测对于为癌症患者制定个性化治疗方案至关重要。然而,高质量的患者抗癌药物反应数据稀缺,且细胞系数据和患者数据具有不同的分布,仅基于细胞系数据训练的模型表现不佳。一些现有方法通过使用迁移学习将知识从细胞系领域转移到患者领域来预测抗癌药物反应。然而,这些分类器的鲁棒性受到细胞系数据中异常值的影响,并且它们没有利用未标记的目标领域数据中的知识。为此,我们提出了一种名为DAPL的模型来预测患者对抗癌药物的反应。该模型通过构建多个变分自编码器从细胞系和患者中提取域不变特征,并使用图神经网络提取药物特征。然后将这些特征组合用于原型学习以训练分类器,从而更好地预测患者的抗癌药物反应。我们使用细胞系数据集CCLE和GDSC作为源域,患者数据集TCGA和PDTC作为目标域进行了实验。结果表明,与其他最先进的方法相比,DAPL在预测患者抗癌药物反应方面表现出色。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验