Suppr超能文献

滞育缓步动物在生命阶段、物种和戒酒硫处理方面的运动比较分析。

Comparative analysis of tardigrade locomotion across life stage, species, and disulfiram treatment.

机构信息

Department of Biology, Ithaca College, Ithaca, New York, United States of America.

出版信息

PLoS One. 2024 Sep 18;19(9):e0310738. doi: 10.1371/journal.pone.0310738. eCollection 2024.

Abstract

Animal locomotion requires coordination between the central and peripheral nervous systems, between sensory inputs and motor outputs, and between nerves and muscles. Analysis of locomotion thus provides a comprehensive and sensitive readout of nervous system function and dysfunction. Tardigrades, the smallest known walking animals, coordinate movement of their eight legs with a relatively simple nervous system, and are a promising model for neuronal control of limb-driven locomotion. Here, we developed open-source tools for automated tracking of tardigrade locomotion in an unconstrained two-dimensional environment, for measuring multiple parameters of individual leg movements, and for quantifying interleg coordination. We used these tools to analyze >13,000 complete strides in >100 tardigrades, and identified preferred walking speeds and distinct step coordination patterns associated with those speeds. In addition, the rear legs of tardigrades, although they have distinct anatomy and step kinematics, were nonetheless incorporated into overall patterns of interleg coordination. Finally, comparisons of tardigrade locomotion across lifespan, between species, and upon disulfiram treatment suggested that neuronal regulation of high-level aspects of walking (e.g. speed, turns, walking bout initiation) operate independently from circuits controlling individual leg movements and interleg coordination.

摘要

动物的运动需要中枢神经系统和外周神经系统之间、感觉输入和运动输出之间以及神经和肌肉之间的协调。因此,对运动的分析提供了对神经系统功能和功能障碍的全面和敏感的解读。缓步动物是已知的最小的行走动物,它们通过相对简单的神经系统协调其 8 条腿的运动,是研究神经元控制肢体驱动运动的有前途的模型。在这里,我们开发了用于在不受限制的二维环境中自动跟踪缓步动物运动的开源工具,用于测量个体腿部运动的多个参数,并用于量化腿部之间的协调。我们使用这些工具分析了 >13,000 个完整的步态,在 >100 只缓步动物中识别出了与这些速度相关的首选行走速度和独特的步协调模式。此外,缓步动物的后腿尽管具有独特的解剖结构和步态运动学,但仍被纳入腿部之间的整体协调模式中。最后,对缓步动物在整个生命周期内、不同物种之间以及双硫仑处理后的运动进行比较表明,神经元对行走的高级方面(例如速度、转弯、行走起始)的调节与控制个体腿部运动和腿部之间协调的电路独立运作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0519/11410187/7bab56b8f060/pone.0310738.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验