Environment Research Institute, Shandong University, Qingdao, Shandong 266237, China.
Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, Guangdong 510640, China.
Environ Sci Technol. 2024 Oct 1;58(39):17334-17343. doi: 10.1021/acs.est.4c03947. Epub 2024 Sep 18.
Carbonyl compounds play a crucial role in the formation of ozone (O) and secondary aerosols, with recent studies particularly highlighting formaldehyde (HCHO) as a significant contributor to the missing particulate sulfur. However, evaluations based on field observations are limited, especially in clean marine environments. Utilizing observation data from a coastal mountain site in May 2021 in Qingdao, northern China, we reveal the important regulating effect of carbonyls in atmospheric oxidation capacity and particulate sulfur chemistry using detailed chemical box models. Photolysis of gaseous carbonyls accounted for >90% and >60% of the primary sources of HO and RO, respectively, contributing 38% of net O production. Notably, HCHO alone constituted 80% of the primary HO and 15% of net O production. Using a multiphase model with updated HCHO-related chemistry, we determine that HCHO chemistry can account for up to 30% of total particulate sulfur (the sum of hydroxymethanesulfonate and sulfate) and address more than one-third of the simulated sulfate gap. The emission-based multiphase model indicates that the HCHO-related pathway remains significant and can account for 20% of the particulate sulfur under clean marine conditions. These findings underscore the importance of carbonyls, particularly HCHO, in regulating the atmospheric oxidation capacity and particulate sulfur chemistry in the marine atmosphere, urging further laboratory studies on chemical kinetics and field measurements of particle-phase carbonyls.
羰基化合物在臭氧 (O) 和二次气溶胶的形成中起着至关重要的作用,最近的研究特别强调甲醛 (HCHO) 是缺失的颗粒硫的重要贡献者。然而,基于现场观测的评估是有限的,特别是在清洁的海洋环境中。利用 2021 年 5 月在中国青岛沿海山区站点的观测数据,我们利用详细的化学箱模型揭示了羰基化合物在大气氧化能力和颗粒硫化学中的重要调节作用。气态羰基化合物的光解分别占 HO 和 RO 主要来源的>90%和>60%,对净 O 生成贡献了 38%。值得注意的是,仅 HCHO 就构成了主要 HO 和净 O 生成的 15%。使用具有更新的 HCHO 相关化学的多相模型,我们确定 HCHO 化学可以解释高达 30%的总颗粒硫(羟甲基磺酸和硫酸盐的总和),并解决了三分之一以上的模拟硫酸盐差距。基于排放的多相模型表明,在清洁的海洋条件下,HCHO 相关途径仍然很重要,可以解释 20%的颗粒硫。这些发现强调了羰基化合物,特别是 HCHO,在调节海洋大气中大气氧化能力和颗粒硫化学中的重要性,敦促进一步进行化学动力学的实验室研究和颗粒相羰基化合物的现场测量。