Zhang Weiyu, Ji Jiaqi, Li Hong, Li Jie, Sun Yiming, Tang Yi, Yang Tianqi, Jin Weiyi, Zhao Yongqing, Huang Congshu, Gong Chenliang
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
National Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Xiamen 361101, P. R. China.
ACS Appl Mater Interfaces. 2024 Oct 2;16(39):52309-52325. doi: 10.1021/acsami.4c10408. Epub 2024 Sep 18.
Phosphoric acid (PA) leakage and volume expansion are critical factors limiting long-term stable operation of PA-doped polybenzimidazole (PBI) for high-temperature proton exchange membrane fuel cells. Enhancing the interaction between the polymer matrix and PA provides an effective way to minimize PA loss and inhibit excessive membrane swelling. The covalent organic frameworks (COFs) are helpful in improving the performance of PA-PBI membranes due to the robust frameworks, adjustable structures, and good compatibility with polymers. Here, in this work, we synthesized porous COFs named TTA-DFP containing triazine rings and pyridine groups at room temperature for as short as 2 h without oxygen isolation. TTA-DFP was then blended with commercial poly[2,2'-(-oxidiphenylene)-5,5'-benzimidazole] (OPBI) to prepare composite membranes. The abundant alkaline N sites in TTA-DFP exhibit strong interactions with PA and OPBI, which not only provide more proton transport pathways to promote proton conduction but also immobilize PA in acidophilic micropores to reduce PA leakage. The composite membranes exhibit a much lower volume swelling ratio than that of the OPBI membrane. The PA retention of the composite membrane after 120 h of treatment at 80 °C and 40% relative humidity can reach as high as 84.6%. Particularly, the proton conductivity of the composite membrane doped with 15 wt% TTA-DFP achieves 0.112 S cm at 180 °C without humidification with a swelling ratio of 24.1%. In addition, it has an optimal peak power density of 824.4 mW cm at 180 °C, which is 1.7 times that of the OPBI membrane. The stability of the composite membrane is much better than that of OPBI at a current density of 0.3 A cm at 140 °C for 120 h.
磷酸(PA)泄漏和体积膨胀是限制高温质子交换膜燃料电池中PA掺杂聚苯并咪唑(PBI)长期稳定运行的关键因素。增强聚合物基体与PA之间的相互作用是最大限度减少PA损失并抑制膜过度溶胀的有效方法。共价有机框架(COF)由于其坚固的框架、可调节的结构以及与聚合物良好的相容性,有助于提高PA-PBI膜的性能。在此工作中,我们在室温下仅用2小时就合成了含有三嗪环和吡啶基团的多孔COF,即TTA-DFP,且无需隔绝氧气。然后将TTA-DFP与商用聚[2,2'-(氧化亚苯基)-5,5'-苯并咪唑](OPBI)共混以制备复合膜。TTA-DFP中丰富的碱性N位点与PA和OPBI表现出强烈的相互作用,这不仅提供了更多的质子传输途径以促进质子传导,还将PA固定在嗜酸性微孔中以减少PA泄漏。复合膜的体积溶胀率远低于OPBI膜。在80℃和40%相对湿度下处理120小时后,复合膜的PA保留率高达84.6%。特别地,掺杂15 wt% TTA-DFP的复合膜在180℃无加湿条件下的质子电导率达到0.112 S/cm,溶胀率为24.1%。此外,它在180℃时的最佳峰值功率密度为824.4 mW/cm²,是OPBI膜的1.7倍。在140℃、电流密度为0.3 A/cm²的条件下持续120小时,复合膜的稳定性远优于OPBI膜。