Suppr超能文献

在NbO纳米片上的钯颗粒上,将大气浓度的CO高效光还原为CHCOOH 。

Highly Active Photoreduction of Atmospheric-Concentration CO into CHCOOH over Palladium Particles on NbO Nanosheets.

作者信息

Ding Jinyu, Du Peijin, Li Peipei, Liu Wenxiu, Xu Jiaqi, Yan Wensheng, Pan Yang, Hu Jun, Zhu Junfa, Chen Qingxia, Jiao Xingchen, Xie Yi

机构信息

Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.

Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China.

出版信息

Angew Chem Int Ed Engl. 2025 Jan 10;64(2):e202414453. doi: 10.1002/anie.202414453. Epub 2024 Oct 31.

Abstract

The endeavor to drive CO photoreduction towards the synthesis of C products is largely thwarted by the colossal energy hurdle inherent in C-C coupling. Herein, we load active metal particles on metal oxide nanosheets to build the dual metal pair sites for steering C-C coupling to form C products. Taking Pd particles anchored on the NbO nanosheets as an example, the high-angle annular dark-field image and X-ray photoelectron spectroscopy demonstrate the presence of Pd-Nb metal pair sites on the Pd-NbO nanosheets. Density functional theory calculations reveal these sites exhibit a low reaction energy barrier of only 1.02 eV for C-C coupling, implying that the introduction of Pd particles effectively tailors the reaction step to form C products. Therefore, the Pd-NbO nanosheets achieve a CHCOOH evolution rate of 13.5 μmol g h in photoreduction of atmospheric-concentration CO, outshining all other single photocatalysts reported to date under analogous conditions.

摘要

将一氧化碳光还原反应导向碳产物合成的努力,在很大程度上受到碳-碳偶联中固有的巨大能量障碍的阻碍。在此,我们将活性金属颗粒负载在金属氧化物纳米片上,构建双金属对位点,以引导碳-碳偶联形成碳产物。以锚定在铌酸纳米片上的钯颗粒为例,高角度环形暗场图像和X射线光电子能谱表明,钯-铌酸纳米片上存在钯-铌金属对位点。密度泛函理论计算表明,这些位点在碳-碳偶联反应中表现出仅1.02 eV的低反应能垒,这意味着钯颗粒的引入有效地调整了反应步骤以形成碳产物。因此,钯-铌酸纳米片在大气浓度一氧化碳的光还原反应中实现了13.5 μmol g h的乙酸生成速率,在类似条件下优于迄今报道的所有其他单一光催化剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验