Mu Jian-Jia, Gao Xuan-Wen, Zhao Zhiwei, Liu Zhao-Meng, Gu Qinfen, Luo Wen-Bin
Institute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China.
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China.
ACS Nano. 2024 Oct 1;18(39):27090-27100. doi: 10.1021/acsnano.4c11702. Epub 2024 Sep 18.
A dynamic-regulated Pd-Fe-N electrocatalyst was effectively constructed with electron-donating and back-donating effects, which serves as an efficient engineering strategy to optimize the electrocatalytic activity. The designed PdFe/FeN features a comprehensive electrocatalytic performance toward the nitrogen reduction reaction (NRR, yield rate of 29.94 μg h mg and FE of 38.43% at -0.2 V vs RHE) and oxygen evolution reaction (OER, 308 mV at 100 mA cm). Combining ATR-FTIR, XAS, and DFT results, the role of the interstitial-N-dopant-induced electron sponge effect has been significantly elucidated in strengthening the electrocatalytic NRR process. Specifically, the introduction of a N dopant, an electron acceptor, initiates the generation of robust Lewis-acidic Fe sites, facilitating free N capture and bonding. Simultaneously, after NH adsorption, the N dopant can back-donate electrons to Fe sites, strengthening the NH deportation through weakening the Lewis acidity of Fe centers. Besides, the electron-deficient Fe sites contribute to the reconstruction of FeOOH, the real active species during the OER, which accelerates the four-electron reaction kinetics. This research offers a perspective on electrocatalyst design, potentially facilitating the evolution of advanced material engineering for efficient electrocatalytic synthesis and energy storage.
通过供电子和反馈电子效应有效构建了一种动态调控的钯铁氮电催化剂,这是优化电催化活性的一种有效工程策略。所设计的钯铁/氮化铁对氮还原反应(NRR,在相对于可逆氢电极-0.2 V时产率为29.94 μg h mg,法拉第效率为38.43%)和析氧反应(OER,在100 mA cm时为308 mV)具有全面的电催化性能。结合衰减全反射傅里叶变换红外光谱(ATR-FTIR)、X射线吸收光谱(XAS)和密度泛函理论(DFT)结果,显著阐明了间隙氮掺杂剂诱导的电子海绵效应在强化电催化NRR过程中的作用。具体而言,作为电子受体的氮掺杂剂的引入引发了强路易斯酸性铁位点的产生,促进了游离氮的捕获和键合。同时,在氨吸附后,氮掺杂剂可以将电子反馈给铁位点,通过削弱铁中心的路易斯酸性来强化氨的脱附。此外,缺电子的铁位点有助于氧化氢氧化铁(OER过程中的实际活性物种)的重构,从而加速四电子反应动力学。本研究为电催化剂设计提供了一个视角,有望推动高效电催化合成和能量存储的先进材料工程的发展。