Suppr超能文献

使用近似布朗桥高效生成跨越障碍轨迹

Efficient generation of barrier crossing trajectories using approximate Brownian bridges.

作者信息

Curtis George, Ramkrishna Doraiswami, Narsimhan Vivek

机构信息

Davidson School of Chemical Engineering, <a href="https://ror.org/02dqehb95">Purdue University, West Lafayette</a>, Indiana 47907, USA.

出版信息

Phys Rev E. 2024 Aug;110(2-1):024131. doi: 10.1103/PhysRevE.110.024131.

Abstract

We examine continuous random walks that are conditioned to reach one region before another. These conditioned processes are used to generate stochastic trajectories for barrier crossing events, which are generally rare and difficult to sample. The processes are generated using a Brownian bridge technique, resulting in near perfect sampling efficiency without accruing error in the conditional statistics of the process. The construction requires the hitting probability or committer function, which is a solution to the backward Fokker-Planck equation, a partial-differential equation that can be difficult to solve through general means. Therefore, we derive a one-dimensional approximation through asymptotic methods for barrier crossing trajectories. We show that this approximation has a simple analytical representation and approaches the true solution as the barrier height increases. Brownian bridge trajectories generated with this approximate solution are then shown to result in accurate conditional statistics when used in conjunction with importance sampling, even in the case when potential energy barriers are not large. We show this idea's effectiveness by simulating rare events in a stochastic chemical reaction network (Schögl reaction) with multiple steady states. This methodology shows great promise for future implementation to simulate rare barrier crossing events for a wide variety of physical processes.

摘要

我们研究了有条件先到达一个区域再到达另一个区域的连续随机游走。这些有条件的过程用于生成跨越障碍事件的随机轨迹,而这类事件通常很少发生且难以采样。这些过程是使用布朗桥技术生成的,从而在不累积过程条件统计误差的情况下实现近乎完美的采样效率。构建过程需要命中概率或提交者函数,它是反向福克 - 普朗克方程的解,这是一个偏微分方程,通常难以用常规方法求解。因此,我们通过渐近方法推导出了一维近似来描述跨越障碍的轨迹。我们表明,这种近似具有简单的解析表达式,并且随着障碍高度的增加趋近于真实解。然后表明,当与重要性采样结合使用时,用这种近似解生成的布朗桥轨迹即使在势能障碍不大的情况下也能产生准确的条件统计。我们通过模拟具有多个稳态的随机化学反应网络(施洛格反应)中的罕见事件来展示这一想法的有效性。这种方法对于未来模拟各种物理过程中的罕见障碍跨越事件具有很大的应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验