Mukherjee Soheli, Le Doussal Pierre, Smith Naftali R
Department of Environmental Physics, Blaustein Institutes for Desert Research, <a href="https://ror.org/05tkyf982">Ben-Gurion University of the Negev</a>, Sede Boqer Campus, 8499000, Israel.
<a href="https://ror.org/03a26mh11">Laboratoire de Physique de l'Ecole Normale Supérieure</a>, CNRS, ENS and PSL Université, <a href="https://ror.org/02en5vm52">Sorbonne Université</a>, Université Paris Cité, 24 rue Lhomond, 75005 Paris, France.
Phys Rev E. 2024 Aug;110(2-1):024107. doi: 10.1103/PhysRevE.110.024107.
We investigate the statistics of the local time T=∫_{0}^{T}δ(x(t))dt that a run and tumble particle (RTP) x(t) in one dimension spends at the origin, with or without an external drift. By relating the local time to the number of times the RTP crosses the origin, we find that the local time distribution P(T) satisfies the large deviation principle P(T)∼e^{-TI(T/T)} in the large observation time limit T→∞. Remarkably, we find that in the presence of drift the rate function I(ρ) is nonanalytic: we interpret its singularity as a dynamical phase transition of first order. We then extend these results by studying the statistics of the amount of time R that the RTP spends inside a finite interval (i.e., the occupation time), with qualitatively similar results. In particular, this yields the long-time decay rate of the probability P(R=T) that the particle does not exit the interval up to time T. We find that the conditional end-point distribution exhibits an interesting change of behavior from unimodal to bimodal as a function of the size of the interval. To study the occupation time statistics, we extend the Donsker-Varadhan large-deviation formalism to the case of RTPs, for general dynamical observables and possibly in the presence of an external potential.
我们研究了一维的奔跑与翻滚粒子(RTP)(x(t))在有无外部漂移情况下,在原点处花费的局部时间(T = \int_{0}^{T}\delta(x(t))dt)的统计特性。通过将局部时间与RTP穿过原点的次数相关联,我们发现在大观测时间极限(T \to \infty)下,局部时间分布(P(T))满足大偏差原理(P(T) \sim e^{-TI(T/T)})。值得注意的是,我们发现在存在漂移的情况下,速率函数(I(\rho))是非解析的:我们将其奇点解释为一阶动态相变。然后,我们通过研究RTP在有限区间内花费的时间(R)(即占据时间)的统计特性来扩展这些结果,得到了定性相似的结果。特别地,这给出了粒子在时间(T)之前未离开区间的概率(P(R = T))的长时间衰减率。我们发现条件端点分布作为区间大小的函数,呈现出从单峰到双峰的有趣行为变化。为了研究占据时间统计特性,我们将东斯科尔 - 瓦拉丹大偏差形式主义扩展到RTP的情况,用于一般的动态可观测量,并且可能存在外部势场。