Suppr超能文献

具有非瞬时重置的随机游走粒子的首次通过时间

First-passage time of run-and-tumble particles with noninstantaneous resetting.

作者信息

Tucci Gennaro, Gambassi Andrea, Majumdar Satya N, Schehr Grégory

机构信息

SISSA-International School for Advanced Studies and INFN, via Bonomea 265, I-34136 Trieste, Italy.

LPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France.

出版信息

Phys Rev E. 2022 Oct;106(4-1):044127. doi: 10.1103/PhysRevE.106.044127.

Abstract

We study the statistics of the first-passage time of a single run-and-tumble particle (RTP) in one spatial dimension, with or without resetting, to a fixed target located at L>0. First, we compute the first-passage time distribution of a free RTP, without resetting or in a confining potential, but averaged over the initial position drawn from an arbitrary distribution p(x). Recent experiments used a noninstantaneous resetting protocol that motivated us to study in particular the case where p(x) corresponds to the stationary non-Boltzmann distribution of an RTP in the presence of a harmonic trap. This distribution p(x) is characterized by a parameter ν>0, which depends on the microscopic parameters of the RTP dynamics. We show that the first-passage time distribution of the free RTP, drawn from this initial distribution, develops interesting singular behaviors, depending on the value of ν. We then switch on resetting, mimicked by relaxation of the RTP in the presence of a harmonic trap. Resetting leads to a finite mean first-passage time and we study this as a function of the resetting rate for different values of the parameters ν and b=L/c, where c is the position of the right edge of the initial distribution p(x). In the diffusive limit of the RTP dynamics, we find a rich phase diagram in the (b,ν) plane, with an interesting reentrance phase transition. Away from the diffusive limit, qualitatively similar rich behaviors emerge for the full RTP dynamics.

摘要

我们研究了一维空间中单个奔跑与翻滚粒子(RTP)在有或没有重置的情况下到达位于(L>0)处固定目标的首次通过时间的统计特性。首先,我们计算了自由RTP(即没有重置或处于限制势中的RTP)的首次通过时间分布,但该分布是对从任意分布(p(x))抽取的初始位置进行平均得到的。最近的实验使用了一种非瞬时重置协议,这促使我们特别研究(p(x))对应于存在谐波陷阱时RTP的平稳非玻尔兹曼分布的情况。这个分布(p(x))由一个参数(\nu>0)表征,该参数取决于RTP动力学的微观参数。我们表明,从这个初始分布抽取的自由RTP的首次通过时间分布会根据(\nu)的值产生有趣的奇异行为。然后我们开启重置,这通过在存在谐波陷阱的情况下RTP的弛豫来模拟。重置导致有限的平均首次通过时间,我们将其作为参数(\nu)和(b = L/c)(其中(c)是初始分布(p(x))右边缘的位置)的不同值的重置率的函数来研究。在RTP动力学的扩散极限下,我们在((b,\nu))平面中发现了一个丰富的相图,其中有一个有趣的再入相变。在远离扩散极限的情况下,完整的RTP动力学也会出现定性上类似的丰富行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验