Vogman G V, Hammer J H
<a href="https://ror.org/041nk4h53">Lawrence Livermore National Laboratory</a>, Livermore, California 94550, USA.
Phys Rev E. 2024 Aug;110(2-2):025201. doi: 10.1103/PhysRevE.110.025201.
A complete quasilinear model is derived for the electrostatic acceleration-driven lower hybrid drift instability in a uniform two-species low-beta plasma in which current is perpendicular to the background magnetic field. The model consists of coupled nonlinear velocity space diffusion equations for the volume-averaged ion and electron distribution functions. Each species' diffusion coefficient depends on a time-evolving spectral density of the electric-field energy per unit volume and a time-evolving dispersion relation. The dispersion relation is expressed analytically in integral form without the use of asymptotic limits and applies to arbitrary distribution functions, so long as they can be expressed as a function of one velocity coordinate, e.g., f(v_{y}) or f(v_{⊥}). The quasilinear model conserves energy and is complete in that it fully describes the evolution of the distribution functions, including resonant and nonresonant particle-wave interactions, while accounting for distribution-function-dependent mixed-complex frequencies. The quasilinear diffusion model is solved numerically and self-consistently using a Crank-Nicolson temporal discretization and a second-order finite-volume velocity-space discretization. Numerical solutions are compared to nonlinear fourth-order accurate continuum kinetic Vlasov-Poisson simulations. Evolution of electric-field energy, growth rates, distribution functions, and diffusion coefficients are shown to be in agreement with Vlasov simulations. The quasilinear model is shown to predict anomalous transport terms, like resistivity and heating, to within a factor of order unity. Discrepancies between the quasilinear model and Vlasov simulations are assessed and attributed primarily to lack of damping in the quasilinear description and to the use of unperturbed-orbit susceptibilities in the linear theory dispersion relation. The results illuminate the predictive accuracy of the quasilinear model, place approximate bounds on its validity, and provide much needed vetting of quasilinear theory's ability to predict the nonlinear state of a microturbulent plasma.
针对均匀双物种低β等离子体中静电加速驱动的低杂波漂移不稳定性,推导了一个完整的拟线性模型,其中电流垂直于背景磁场。该模型由体积平均离子和电子分布函数的耦合非线性速度空间扩散方程组成。每个物种的扩散系数取决于单位体积电场能量的随时间演化的谱密度和随时间演化的色散关系。色散关系以积分形式解析表示,无需使用渐近极限,并且适用于任意分布函数,只要它们可以表示为一个速度坐标的函数,例如f(vy)或f(v⊥)。拟线性模型守恒能量,并且是完整的,因为它充分描述了分布函数的演化,包括共振和非共振粒子 - 波相互作用,同时考虑了依赖于分布函数的混合复频率。使用克兰克 - 尼科尔森时间离散化和二阶有限体积速度空间离散化对拟线性扩散模型进行数值求解并自洽求解。将数值解与非线性四阶精确连续动力学弗拉索夫 - 泊松模拟进行比较。电场能量、增长率、分布函数和扩散系数的演化与弗拉索夫模拟结果一致。结果表明,拟线性模型能够在数量级为1的因子范围内预测反常输运项,如电阻率和加热。评估了拟线性模型与弗拉索夫模拟之间的差异,主要归因于拟线性描述中缺乏阻尼以及在线性理论色散关系中使用未扰动轨道磁化率。这些结果阐明了拟线性模型的预测精度,对其有效性给出了近似界限,并对拟线性理论预测微湍流等离子体非线性状态的能力进行了急需的审查。