Rosa-Raíces Jorge L, Limmer David T
Department of Chemistry, <a href="https://ror.org/01an7q238">University of California, Berkeley</a>, California 94720, USA.
Materials Science Division, <a href="https://ror.org/02jbv0t02">Lawrence Berkeley National Laboratory</a>, Berkeley, California 94720, USA.
Phys Rev E. 2024 Aug;110(2-1):024120. doi: 10.1103/PhysRevE.110.024120.
Studying the structure of systems in nonequilibrium steady states necessitates tools that quantify population shifts and associated deformations of equilibrium free-energy landscapes under persistent currents. Within the framework of stochastic thermodynamics, we establish a variant of the Kawasaki-Crooks equality that relates nonequilibrium free-energy corrections in overdamped Langevin systems to heat dissipation statistics along time-reversed relaxation trajectories computable with molecular simulation. Using stochastic control theory, we arrive at a general variational approach to evaluate the Kawasaki-Crooks equality and use it to estimate distribution functions of order parameters in specific models of driven and active matter, attaining substantial improvement in accuracy over simple perturbative methods.
研究非平衡稳态下系统的结构需要能够量化在持续电流作用下平衡自由能景观的种群转移和相关变形的工具。在随机热力学框架内,我们建立了川崎 - 克鲁克斯等式的一个变体,该变体将过阻尼朗之万系统中的非平衡自由能修正与沿时间反转弛豫轨迹的热耗散统计联系起来,而这些轨迹可通过分子模拟计算得出。利用随机控制理论,我们得出了一种通用的变分方法来评估川崎 - 克鲁克斯等式,并将其用于估计驱动物质和活性物质特定模型中序参量的分布函数,相较于简单的微扰方法,在精度上有了显著提高。