Reis Fábio D A Aarão, Voller Vaughan R
Instituto de Física, <a href="https://ror.org/02rjhbb08">Universidade Federal Fluminense</a>, Avenida Litorânea s/n, 24210-340 Niterói, Rio de Janeiro, Brazil.
Department of Civil, Environmental, and Geo- Engineering and Saint Anthony Falls Laboratory, <a href="https://ror.org/017zqws13">University of Minnesota</a>, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455, USA.
Phys Rev E. 2024 Aug;110(2):L022102. doi: 10.1103/PhysRevE.110.L022102.
Diffusion in composite media with high contrasts between diffusion coefficients in fractal sets of inclusions and in their embedding matrices is modeled by lattice random walks (RWs) with probabilities p<1 of hops from fractal sites and 1 from matrix sites. Superdiffusion is predicted in time intervals that depend on p and with diffusion exponents that depend on the dimensions of matrix (E) and fractal (D_{F}) as ν=1/(2+D_{F}-E). This contrasts with the nonuniversal subdiffusion of RWs confined to fractal media. Simulations with four fractals show the anomaly at several time decades for p≲10^{-3} and the crossover to the asymptotic normal diffusion. These results show that superdiffusion can be observed in isotropic RWs with finite moments of hop length distributions and allow the estimation of the dimension of the inclusion set from the diffusion exponent. However, displacements within single trajectories have normal scaling, which shows transient ergodicity breaking.
在包含物的分形集与其嵌入基质中扩散系数具有高对比度的复合介质中,扩散是通过晶格随机游走(RWs)来建模的,从分形位点跳跃的概率(p\lt1),从基质位点跳跃的概率为(1)。在取决于(p)的时间间隔内预测到超扩散,且扩散指数取决于基质((E))和分形((D_F))的维度,即(\nu = 1/(2 + D_F - E))。这与局限于分形介质的随机游走的非普适亚扩散形成对比。对四种分形的模拟显示,对于(p≲10^{-3}),在几个时间数量级上存在异常,并且向渐近正态扩散转变。这些结果表明,在具有跳跃长度分布有限矩的各向同性随机游走中可以观察到超扩散,并且可以从扩散指数估计包含集的维度。然而,单个轨迹内的位移具有正态标度,这表明存在瞬态遍历性破坏。