Terdik J Zsolt, Weitz David A, Spaepen Frans
John A. Paulson School of Engineering and Applied Sciences, <a href="https://ror.org/03vek6s52">Harvard University</a>, Cambridge, Massachusetts 02138, USA.
John A. Paulson School of Engineering and Applied Sciences, <a href="https://ror.org/03vek6s52">Harvard University</a>, Cambridge, Massachusetts 02138, USA; Department of Physics, <a href="https://ror.org/03vek6s52">Harvard University</a>, Cambridge, Massachusetts 02138, USA; and <a href="https://ror.org/008cfmj78">Wyss Institute for Biologically Inspired Engineering</a>, Harvard University, Boston, Massachusetts 02115.
Phys Rev E. 2024 Aug;110(2-1):024606. doi: 10.1103/PhysRevE.110.024606.
We introduce a technique, traction rheoscopy, to carry out mechanical testing of colloidal solids. A confocal microscope is used to directly measure stress and strain during externally applied deformation. The stress is measured, with single-mPa resolution, by determining the strain in a compliant polymer gel in mechanical contact with the colloidal solid. Simultaneously, the confocal microscope is used to measure structural change in the colloidal solid with single particle resolution during the deformation. To demonstrate the utility and sensitivity of this technique, we deform a hard-sphere colloidal glass in simple shear, and from the macroscopic shear strain and measured stress determine the stress-strain curve. Using the stress-strain curve and measured shear modulus, we decompose the macroscopic shear strain into an elastic and a plastic component. We also determine a local strain tensor for each particle using the changes in its nearest-neighbor distances. These local strains are spatially heterogeneous throughout the sample, but, when averaged, match the macroscopic strain. A microscopic yield criterion is used to split the local strains into subyield and yielded partitions; averages over these partitions complement the macroscopic elastic-plastic decomposition obtained from the stress-strain curve. By combining mechanical testing with single-particle structural measurements, traction rheoscopy is a unique tool for the study of deformation mechanisms in a diverse range of soft materials.
我们介绍了一种用于对胶体固体进行力学测试的技术——牵引流变学。使用共聚焦显微镜在外部施加变形过程中直接测量应力和应变。通过测定与胶体固体机械接触的柔顺聚合物凝胶中的应变,以单兆帕的分辨率测量应力。同时,在变形过程中,共聚焦显微镜用于以单颗粒分辨率测量胶体固体中的结构变化。为了证明该技术的实用性和灵敏度,我们在简单剪切中使硬球胶体玻璃发生变形,并根据宏观剪切应变和测量的应力确定应力 - 应变曲线。利用应力 - 应变曲线和测量的剪切模量,我们将宏观剪切应变分解为弹性分量和塑性分量。我们还利用每个颗粒最近邻距离的变化确定其局部应变张量。这些局部应变在整个样品中空间上是不均匀的,但平均后与宏观应变相匹配。使用微观屈服准则将局部应变划分为亚屈服和屈服部分;这些部分的平均值补充了从应力 - 应变曲线获得的宏观弹塑性分解。通过将力学测试与单颗粒结构测量相结合,牵引流变学是研究各种软材料变形机制的独特工具。