Suppr超能文献

基于最大熵模型技术和未来气候变化预测中国入侵物种 Olivier 的潜在栖息地分布。

Predicting potential habitat distribution of the invasive species Olivier in China based on MaxEnt modelling technique and future climate change.

机构信息

College of Life Science, China West Normal University, Nanchong 637002, China.

Depatment of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan.

出版信息

Bull Entomol Res. 2024 Aug;114(4):524-533. doi: 10.1017/S0007485324000336. Epub 2024 Sep 19.

Abstract

Changes in the distribution of species due to global climate change have a critically significant impact on the increase in the spread of invasive species. An in-depth study of the distribution patterns of invasive species and the factors influencing them can help to better predict and combat invasive alien species. Olivier is an invasive species that primarily harms plants of H. Wendl. The pest invades trees in three main ways: by laying eggs and incubating them in the crown of the plant, on roots at the surface and at the base of the trunk or petiole. Most of the plants in the genus are taller, and the damage is concentrated in the middle and upper parts of the plant, making control more difficult. In this paper, we combine 19 bioclimatic variables based on the MaxEnt model to project the current and future distributions of under three typical emission scenarios (2.6 W m (SSP1-2.6), 4.5 W m (SSP2-4.5) and 8.5 W m (SSP5-8.5)) in the 2050s and 2090s. Among the 19 bioclimatic variables, five variables were screened out by contribution rates, namely annual mean temperature (BIO 1), precipitation of driest quarter (BIO 17), minimum temperature of coldest month (BIO 6), mean diurnal range (BIO 2) and precipitation of wettest quarter (BIO 16). These five variables are key environmental variables that influence habitat suitability for and are representative in reflecting its potential habitat. The results showed that is now widely distributed in the southeastern coastal area of China (high suitability zone), concentrating in the provinces of Hainan, Guangdong, Fujian, Guangxi and Taiwan. In the future, the area of high and low suitability zones will increase and the area of medium suitability zones will decrease. The area of low suitability zone will still be in the largest proportion. This study aims to provide a theoretical reference for the future control of from the perspective of geographic distribution.

摘要

由于全球气候变化导致物种分布发生变化,这对入侵物种的传播扩散产生了重大影响。深入研究入侵物种的分布模式及其影响因素,有助于更好地预测和防治外来入侵物种。奥利弗是一种主要危害胡颓子属植物的入侵物种。该害虫主要通过在树冠内产卵和孵化、在地表和树干基部或叶柄处的根部产卵和孵化三种方式入侵树木。该属的大多数植物都比较高大,而受损害的部位集中在植物的中上部,这使得控制工作更加困难。在本文中,我们结合了基于最大熵模型的 19 个生物气候变量,根据三种典型排放情景(2.6 W m(SSP1-2.6)、4.5 W m(SSP2-4.5)和 8.5 W m(SSP5-8.5)),对 2050 年代和 2090 年代的分布情况进行了预测。在 19 个生物气候变量中,有 5 个变量的贡献率被筛选出来,分别是年平均温度(BIO 1)、最干旱季度的降水量(BIO 17)、最冷月的最低温度(BIO 6)、平均日较差(BIO 2)和最湿润季度的降水量(BIO 16)。这五个变量是影响其生境适宜性的关键环境变量,代表了其潜在生境的特点。研究结果表明,目前奥利弗在中国东南沿海地区(高适宜区)广泛分布,集中在海南、广东、福建、广西和台湾等省份。未来,高适宜区和低适宜区的面积将会增加,中适宜区的面积将会减少。低适宜区的面积仍将占据最大比例。本研究旨在从地理分布的角度为未来奥利弗的防治工作提供理论参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验