Suppr超能文献

针对配位框架自旋量子比特的四甲基铵[KCoFe(CN)]的自旋相干与磁化动力学

Spin coherence and magnetization dynamics of TMA[KCoFe(CN)] toward coordination-framework spin qubits.

作者信息

Gupta Shraddha, Wakizaka Masanori, Yamane Takeshi, Sato Kazunobu, Ishikawa Ryuta, Funakoshi Nobuto, Yamashita Masahiro

机构信息

School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China.

Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan.

出版信息

Phys Chem Chem Phys. 2024 Oct 2;26(38):24924-24930. doi: 10.1039/d4cp02263g.

Abstract

Metal compounds with = 1/2 coordination-frameworks have been emerging as new powerful qubit candidates. In this study, we have reported the CN-based coordination framework TMA[KCoFe(CN)] to be a qubit. We explored the magnetization dynamics and spin coherence of the magnetic dilution of the = 1/2 Fe(III) complex TMA[KFe(CN)] (TMA = tetramethylammonium) in its Co(III)-based diamagnetic analogue TMA[KCo(CN)]. Alternating-current (AC) susceptibility data illustrate a slow magnetic relaxation upon applying a field of 0.1 T, which follows the phonon-bottleneck relaxation mechanism along with the Raman process. A magnetic relaxation time () of 0.3 s (2% Fe) was realized at 1.8 K. Moreover, pulsed EPR data reveal a coherence duration of 1 μs (0.1% Fe) at 4 K with successful observation of Rabi oscillation at 4 K and 13 K (2% Fe) using MW pulses with variable irradiation-field strengths. The overall results indicate that TMA[KCoFe(CN)] represents a promising qubit candidate, as it is capable of being placed in any superposition of the two distinct states ( = +1/2 and = -1/2).

摘要

具有1/2配位框架的金属化合物已成为新的强大量子比特候选物。在本研究中,我们报道了基于氰基的配位框架TMA[KCoFe(CN)]作为一种量子比特。我们研究了1/2铁(III)配合物TMA[KFe(CN)](TMA = 四甲基铵)在其基于钴(III)的抗磁性类似物TMA[KCo(CN)]中的磁稀释的磁化动力学和自旋相干性。交流(AC)磁化率数据表明,在施加0.1 T磁场时存在缓慢的磁弛豫,这遵循了声子瓶颈弛豫机制以及拉曼过程。在1.8 K时实现了0.3 s(2%铁)的磁弛豫时间()。此外,脉冲EPR数据显示在4 K时相干持续时间为1 μs(0.1%铁),并且使用具有可变辐照场强的微波脉冲成功观察到了4 K和13 K(2%铁)时的拉比振荡。总体结果表明,TMA[KCoFe(CN)]是一种有前景的量子比特候选物,因为它能够处于两个不同自旋态(= +1/2和 = -1/2)的任何叠加态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验