Suppr超能文献

MetaFunc:微生物群落高通量测序的分类学和功能分析

MetaFunc: taxonomic and functional analyses of high throughput sequencing for microbiomes.

作者信息

Sulit Arielle Kae, Kolisnik Tyler, Frizelle Frank Antony, Purcell Rachel, Schmeier Sebastian

机构信息

Department of Surgery, University of Otago, Christchurch, New Zealand.

School of Natural Sciences, Massey University, Auckland, New Zealand.

出版信息

Gut Microbiome (Camb). 2023 Jan 12;4:e4. doi: 10.1017/gmb.2022.12. eCollection 2023.

Abstract

The identification of functional processes taking place in microbiome communities augment traditional microbiome taxonomic studies, giving a more complete picture of interactions taking place within the community. While there are applications that perform functional annotation on metagenomes or metatranscriptomes, very few of these are able to link taxonomic identity to function or are limited by their input types or databases used. Here we present MetaFunc, a workflow which takes RNA sequences as input reads, and from these (1) identifies species present in the microbiome sample and (2) provides gene ontology annotations associated with the species identified. In addition, MetaFunc allows for host gene analysis, mapping the reads to a host genome, and separating these reads, prior to microbiome analyses. Differential abundance analysis for microbe taxonomies, and differential gene expression analysis and gene set enrichment analysis may then be carried out through the pipeline. A final correlation analysis between microbial species and host genes can also be performed. Finally, MetaFunc builds an R shiny application that allows users to view and interact with the microbiome results. In this paper, we showed how MetaFunc can be applied to metatranscriptomic datasets of colorectal cancer.

摘要

对微生物群落中发生的功能过程进行识别,丰富了传统的微生物分类学研究,能更全面地呈现群落内部发生的相互作用。虽然有一些应用程序可对宏基因组或宏转录组进行功能注释,但其中很少有能将分类身份与功能联系起来的,或者受到其输入类型或所用数据库的限制。在此,我们展示MetaFunc,这是一个以RNA序列作为输入读数的工作流程,由此(1)识别微生物组样本中存在的物种,以及(2)提供与所识别物种相关的基因本体注释。此外,MetaFunc允许进行宿主基因分析,将读数映射到宿主基因组,并在微生物组分析之前分离这些读数。然后可以通过该流程对微生物分类进行差异丰度分析、差异基因表达分析和基因集富集分析。还可以对微生物物种和宿主基因进行最终的相关性分析。最后,MetaFunc构建了一个R shiny应用程序,允许用户查看微生物组结果并与之交互。在本文中,我们展示了MetaFunc如何应用于结直肠癌的宏转录组数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4746/11406379/53bda2ea1568/S2632289722000123_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验