Suppr超能文献

一种利用两个辅助属性的分层随机抽样中的最优估计方法及其在农业、人口统计学、金融和教育领域的应用。

An optimal estimation approach in stratified random sampling utilizing two auxiliary attributes with application in agricultural, demography, finance, and education sectors.

作者信息

Almulhim F A, Iqbal Kanwal, Al Samman Fathia M, Ali Asad, Almazah Mohammed M A

机构信息

Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.

Department of Mathematics and Statistics, University of Lahore, Sargodha-Campus, Sargodha, 40100, Pakistan.

出版信息

Heliyon. 2024 Aug 30;10(17):e37234. doi: 10.1016/j.heliyon.2024.e37234. eCollection 2024 Sep 15.

Abstract

In the contemporary era of information technology, copious amounts of data are ubiquitous, generated across various sectors on a daily basis. Analyzing every unit of data is impractical due to constraints such as limited resources in terms of time, labor, and cost. In such scenarios, survey sampling becomes a recommended approach for extracting information about population parameters. The primary goal of this study is to devise an estimation method for acquiring information about population parameters. We propose an optimal estimator for an improved estimation of the population mean in stratified random sampling by leveraging the information from two auxiliary attributes. The proposed estimator's bias, mean squared error (MSE), and minimum mean squared error are determined up to the first-order approximation. It is demonstrated that, under the derived conditions, the proposed estimator theoretically outperforms existing estimators. Four population are utilized to evaluate both the performance and applicability of the proposed estimator. The percentage relative efficiency (PRE) of proposed estimator for all the populations is 178.389, 142.881, 181.383, and 152.679 respectively. The suggested estimator superior to existing estimators, as demonstrated by the numerical examples.

摘要

在当代信息技术时代,大量数据无处不在,每天在各个部门产生。由于时间、劳动力和成本等资源有限的限制,分析每一个数据单元是不切实际的。在这种情况下,调查抽样成为提取总体参数信息的推荐方法。本研究的主要目标是设计一种获取总体参数信息的估计方法。我们提出了一种最优估计器,通过利用两个辅助属性的信息,在分层随机抽样中改进总体均值的估计。所提出的估计器的偏差、均方误差(MSE)和最小均方误差在一阶近似下确定。结果表明,在所推导的条件下,所提出的估计器在理论上优于现有估计器。利用四个总体来评估所提出估计器的性能和适用性。所提出估计器对所有总体的百分比相对效率(PRE)分别为178.389、142.881、181.383和152.679。数值例子表明,所建议的估计器优于现有估计器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/068b/11407976/2530c03de022/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验