Makvandi Mehdi, Yuan Philip F, Ji Qunfeng, Li Chuancheng, Elsadek Mohamed, Li Wenjing, Hassan Ahmad, Li Yu
College of Architecture and Urban Planning, Tongji University, Shanghai, China.
College of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China.
Heliyon. 2024 Aug 30;10(17):e36904. doi: 10.1016/j.heliyon.2024.e36904. eCollection 2024 Sep 15.
Urbanization presents significant challenges to air quality and climate resilience, necessitating pioneering urban design solutions to enhance air circulation and mitigate pollutants. This urgency intensifies in densely populated and rapidly evolving regions like Wuhan, China, where effective strategies are crucial for sustainable development. This study introduces an innovative 3D Urban Form Optimization (3D-UFO) methodology aimed at advancing urban block design configurations to improve urbanization quality. The 3D-UFO approach systematically addresses the multifaceted challenges of climate change and air quality degradation in rapidly urbanizing areas. Integrating GIS-based analysis for comprehensive Land-Use and Land-Cover Change (LULCC) evaluation with Computational Fluid Dynamics (CFD), our approach employs systematic exploration guided by established urban airflow study protocols. Robust metrics-Airspeed-Ratio (ASR) and Average-Age-of-Local-Air (ALA)-quantify the impact of diverse urban block design strategies on air-circulation efficiency and pollutant dispersion. Analysis across various urban scenarios, yielded by the proposed 3D-UFO approach, reveal significant variations in air-circulation efficiency at street and building levels (SBLs). Optimal urban air circulation achieves efficiency levels of 50-70 % when airflow aligns orthogonally across and parallel to streets. Adjusting street-level building heights, especially incorporating taller structures, boosts ventilation efficiency by 20-30 %, which is crucial for improving airflow dynamics in urban settings. Higher Height-to-Width (H/W) ratios (>5.5) yield a 218.5 % increase in ventilation in specific urban layouts. Notably, the synergy of street-aspect-ratio and building-height-ratio adjustments significantly enhance ASR and ALA, providing a quantitative foundation for sustainable urban development. This 3D-UFO methodology, fusing LULCC analysis, CFD simulations, and systematic exploration, emerge as a valuable framework for urban planners and designers. The study offers informed insights into urban sustainability challenges, demonstrating advancements in addressing environmental concerns and improving living conditions within densely populated environments.
城市化给空气质量和气候适应能力带来了重大挑战,因此需要开创性的城市设计解决方案来加强空气流通并减轻污染物。在中国武汉这样人口密集且快速发展的地区,这种紧迫性更加突出,在这些地区,有效的策略对可持续发展至关重要。本研究引入了一种创新的三维城市形态优化(3D-UFO)方法,旨在推进城市街区设计配置,以提高城市化质量。3D-UFO方法系统地应对了快速城市化地区气候变化和空气质量恶化的多方面挑战。我们的方法将基于地理信息系统(GIS)的综合土地利用和土地覆盖变化(LULCC)评估分析与计算流体动力学(CFD)相结合,采用既定的城市气流研究协议进行系统探索。强大的指标——风速比(ASR)和局部空气平均年龄(ALA)——量化了不同城市街区设计策略对空气流通效率和污染物扩散的影响。通过所提出的3D-UFO方法对各种城市场景进行分析,结果显示街道和建筑层面(SBLs)的空气流通效率存在显著差异。当气流与街道正交和平行对齐时,最佳城市空气流通效率可达到50%-70%。调整街道层面的建筑高度,特别是纳入更高的建筑结构,可将通风效率提高20%-30%,这对于改善城市环境中的气流动力学至关重要。在特定城市布局中,更高的高宽比(H/W)(>5.5)可使通风量增加218.5%。值得注意的是,街道长宽比和建筑高度比调整的协同作用显著提高了ASR和ALA,为可持续城市发展提供了定量基础。这种融合了LULCC分析、CFD模拟和系统探索的3D-UFO方法,成为城市规划师和设计师的宝贵框架。该研究为城市可持续发展挑战提供了有见地的见解,展示了在解决环境问题和改善人口密集环境中的生活条件方面取得的进展。