Suppr超能文献

基于稳定同位素与多元素综合分析的中国‘翠冠’梨地理起源初步研究

Preliminary study on the geographical origin of Chinese 'Cuiguan' pears using integrated stable isotope and multi-element analyses.

作者信息

Zeng Tingting, Fu Tingting, Huang Yongchuan, Zhang Wei, Gong Jiuping, Ji Bingjing, Yang Xiaoxia, Tang Mingfeng

机构信息

Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China.

Agricultural Product Quality and Safety Supervision, Inspection and Testing Center, Ministry of Agriculture and Rural Affairs, Chongqing, People's Republic of China.

出版信息

Heliyon. 2024 Sep 5;10(17):e37450. doi: 10.1016/j.heliyon.2024.e37450. eCollection 2024 Sep 15.

Abstract

Distinguish the geographical origin of the pear is important due to the increasingly valued brand protection and reducing the potential food safety risks. In this study, the profiles of stable isotopes (δC, δN, δH, δO) and the contents of 16 elements in pear peer from four production areas were analyzed. The δC, δN, δH, δO and 12 elements were significantly different ( < 0.05) in the four production areas. Chemometrics analysis including principal component analysis (PCA), orthogonal partial least squares discriminant analysis (OPLS-DA) and linear discriminant analysis (LDA) were exploited for geographical origin classification of samples. OPLS-DA analysis showed that crucial variables (δC, δO, δH, Ni, Cd, Ca, δN, Sr and Ga) are more relevant for the discrimination of the samples. OPLS-DA achieved pear origin accuracy rates of 87.76 % by combining stable isotope ratios and elemental contents. LDA had a higher accuracy rate than OPLS-DA, and the LDA analysis showed that the original discrimination rate reached to 100 %, while the cross-validated rate reached to 95.7 %. These studies indicated that this method could be used to assess the geographical discrimination of pear from different producing areas and could potentially control the fair trade of pear in fruit markets.

摘要

由于品牌保护日益受到重视以及降低潜在食品安全风险,区分梨的地理来源很重要。在本研究中,分析了来自四个产地的梨果中稳定同位素(δC、δN、δH、δO)的特征以及16种元素的含量。四个产地的δC、δN、δH、δO和12种元素存在显著差异(<0.05)。利用包括主成分分析(PCA)、正交偏最小二乘判别分析(OPLS-DA)和线性判别分析(LDA)在内的化学计量学分析对样品进行地理来源分类。OPLS-DA分析表明,关键变量(δC、δO、δH、Ni、Cd、Ca、δN、Sr和Ga)与样品的判别更为相关。通过结合稳定同位素比率和元素含量,OPLS-DA实现了87.76%的梨产地准确率。LDA的准确率高于OPLS-DA,LDA分析表明原始判别率达到100%,而交叉验证率达到95.7%。这些研究表明,该方法可用于评估不同产地梨的地理判别,并有可能控制水果市场上梨的公平交易。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad7e/11408817/aec5087d7d9b/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验