Balaji Muralidhar Madabhushi, Ahsanullah Danyal, Rangarajan Prasanna
Electrical and Computer Engineering, Lyle School of Engineering, Southern Methodist University, Dallas, Texas 75205, USA.
Biomed Opt Express. 2024 Aug 22;15(9):5442-5460. doi: 10.1364/BOE.531797. eCollection 2024 Sep 1.
Temporally varying speckle patterns, produced by light-matter interaction encode valuable information about inhomogeneities embedded within a scattering medium. These speckle fluctuations arise either from the tuning of the emission frequency of a laser illuminating a static scattering medium or from the microscopic motion of scatterers within a dynamically scattering medium. In this work, we detect embedded inhomogeneities by probing static and dynamic scattering media with coherent light and leveraging the statistical distribution of temporal speckle differences. In addition, we utilize the insights from the speckle differencing paradigm, to present the first experimental results of detecting inhomogeneities embedded within a scattering medium using bio-inspired neuromorphic sensors. The proposed neuromorphic approach simplifies the optical and electronic design, and significantly reduces data throughput by capturing only the differential information in the form of 1-bit spikes.
由光与物质相互作用产生的随时间变化的散斑图案编码了关于嵌入散射介质中的不均匀性的有价值信息。这些散斑波动要么源于照射静态散射介质的激光发射频率的调谐,要么源于动态散射介质中散射体的微观运动。在这项工作中,我们通过用相干光探测静态和动态散射介质并利用时间散斑差异的统计分布来检测嵌入的不均匀性。此外,我们利用散斑差分范式的见解,展示了使用受生物启发的神经形态传感器检测嵌入散射介质中的不均匀性的首个实验结果。所提出的神经形态方法简化了光学和电子设计,并通过仅以1位尖峰的形式捕获差分信息显著降低了数据吞吐量。