Suppr超能文献

基于深度学习的不同葡萄糖代谢状态下视网膜血管参数的分析与比较

Analysis and comparison of retinal vascular parameters under different glucose metabolic status based on deep learning.

作者信息

Jiang Yan, Gong Di, Chen Xiao-Hong, Yang Lin, Xu Jing-Jing, Wei Qi-Jie, Chen Bin-Bin, Cai Yong-Jiang, Xi Wen-Qun, Zhang Zhe

机构信息

Departments of Laboratory Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China.

Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, Guangdong Province, China.

出版信息

Int J Ophthalmol. 2024 Sep 18;17(9):1581-1591. doi: 10.18240/ijo.2024.09.02. eCollection 2024.

Abstract

AIM

To develop a deep learning-based model for automatic retinal vascular segmentation, analyzing and comparing parameters under diverse glucose metabolic status (normal, prediabetes, diabetes) and to assess the potential of artificial intelligence (AI) in image segmentation and retinal vascular parameters for predicting prediabetes and diabetes.

METHODS

Retinal fundus photos from 200 normal individuals, 200 prediabetic patients, and 200 diabetic patients (600 eyes in total) were used. The U-Net network served as the foundational architecture for retinal artery-vein segmentation. An automatic segmentation and evaluation system for retinal vascular parameters was trained, encompassing 26 parameters.

RESULTS

Significant differences were found in retinal vascular parameters across normal, prediabetes, and diabetes groups, including artery diameter (=0.008), fractal dimension (=0.000), vein curvature (=0.003), C-zone artery branching vessel count (=0.049), C-zone vein branching vessel count (=0.041), artery branching angle (=0.005), vein branching angle (=0.001), artery angle asymmetry degree (=0.003), vessel length density (=0.000), and vessel area density (=0.000), totaling 10 parameters.

CONCLUSION

The deep learning-based model facilitates retinal vascular parameter identification and quantification, revealing significant differences. These parameters exhibit potential as biomarkers for prediabetes and diabetes.

摘要

目的

开发一种基于深度学习的视网膜血管自动分割模型,分析和比较不同葡萄糖代谢状态(正常、糖尿病前期、糖尿病)下的参数,并评估人工智能(AI)在图像分割和视网膜血管参数预测糖尿病前期和糖尿病方面的潜力。

方法

使用了来自200名正常个体、200名糖尿病前期患者和200名糖尿病患者的眼底照片(共600只眼睛)。U-Net网络作为视网膜动静脉分割的基础架构。训练了一个视网膜血管参数自动分割和评估系统,涵盖26个参数。

结果

在正常、糖尿病前期和糖尿病组的视网膜血管参数中发现了显著差异,包括动脉直径(=0.008)、分形维数(=0.000)、静脉曲率(=0.003)、C区动脉分支血管计数(=0.049)、C区静脉分支血管计数(=0.041)、动脉分支角度(=0.005)、静脉分支角度(=0.001)、动脉角度不对称度(=0.003)、血管长度密度(=0.000)和血管面积密度(=0.000),共10个参数。

结论

基于深度学习的模型有助于视网膜血管参数的识别和量化,揭示了显著差异。这些参数具有作为糖尿病前期和糖尿病生物标志物的潜力。

相似文献

1
Analysis and comparison of retinal vascular parameters under different glucose metabolic status based on deep learning.
Int J Ophthalmol. 2024 Sep 18;17(9):1581-1591. doi: 10.18240/ijo.2024.09.02. eCollection 2024.
3
Retinal vascular geometry detection as a biomarker in diabetes mellitus.
Eur J Ophthalmol. 2022 May;32(3):1710-1719. doi: 10.1177/11206721211033488. Epub 2021 Jul 20.
5
A new deep learning method for blood vessel segmentation in retinal images based on convolutional kernels and modified U-Net model.
Comput Methods Programs Biomed. 2021 Jun;205:106081. doi: 10.1016/j.cmpb.2021.106081. Epub 2021 Apr 8.
7
Ocular biomarkers of cognitive decline based on deep-learning retinal vessel segmentation.
BMC Geriatr. 2024 Jan 6;24(1):28. doi: 10.1186/s12877-023-04593-8.

引用本文的文献

本文引用的文献

1
Intelligent diagnosis of retinal vein occlusion based on color fundus photographs.
Int J Ophthalmol. 2024 Jan 18;17(1):1-6. doi: 10.18240/ijo.2024.01.01. eCollection 2024.
2
From normal population to prediabetes and diabetes: study of influencing factors and prediction models.
Front Endocrinol (Lausanne). 2023 Oct 26;14:1225696. doi: 10.3389/fendo.2023.1225696. eCollection 2023.
3
Guidelines on clinical research evaluation of artificial intelligence in ophthalmology (2023).
Int J Ophthalmol. 2023 Sep 18;16(9):1361-1372. doi: 10.18240/ijo.2023.09.02. eCollection 2023.
4
Development and evaluation of a risk prediction model for diabetes mellitus type 2 patients with vision-threatening diabetic retinopathy.
Front Endocrinol (Lausanne). 2023 Aug 24;14:1244601. doi: 10.3389/fendo.2023.1244601. eCollection 2023.
5
Analysis of retinal arteriolar and venular parameters in primary open angle glaucoma.
Int J Ophthalmol. 2023 May 18;16(5):671-679. doi: 10.18240/ijo.2023.05.01. eCollection 2023.
6
Diagnosis and Management of Prediabetes: A Review.
JAMA. 2023 Apr 11;329(14):1206-1216. doi: 10.1001/jama.2023.4063.
7
Changes in retinal vascular bifurcation in eyes with myopia.
BMC Ophthalmol. 2022 Oct 21;22(1):408. doi: 10.1186/s12886-022-02629-y.
8
Association of retinal fractal dimension and vessel tortuosity with impaired renal function among healthy Chinese adults.
Front Med (Lausanne). 2022 Sep 2;9:925756. doi: 10.3389/fmed.2022.925756. eCollection 2022.
9
Association Between the Severity of Diabetic Retinopathy and Optical Coherence Tomography Angiography Metrics.
Front Endocrinol (Lausanne). 2021 Dec 10;12:777552. doi: 10.3389/fendo.2021.777552. eCollection 2021.
10
Deep Learning of the Retina Enables Phenome- and Genome-Wide Analyses of the Microvasculature.
Circulation. 2022 Jan 11;145(2):134-150. doi: 10.1161/CIRCULATIONAHA.121.057709. Epub 2021 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验