Jiang Yan, Gong Di, Chen Xiao-Hong, Yang Lin, Xu Jing-Jing, Wei Qi-Jie, Chen Bin-Bin, Cai Yong-Jiang, Xi Wen-Qun, Zhang Zhe
Departments of Laboratory Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China.
Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, Guangdong Province, China.
Int J Ophthalmol. 2024 Sep 18;17(9):1581-1591. doi: 10.18240/ijo.2024.09.02. eCollection 2024.
To develop a deep learning-based model for automatic retinal vascular segmentation, analyzing and comparing parameters under diverse glucose metabolic status (normal, prediabetes, diabetes) and to assess the potential of artificial intelligence (AI) in image segmentation and retinal vascular parameters for predicting prediabetes and diabetes.
Retinal fundus photos from 200 normal individuals, 200 prediabetic patients, and 200 diabetic patients (600 eyes in total) were used. The U-Net network served as the foundational architecture for retinal artery-vein segmentation. An automatic segmentation and evaluation system for retinal vascular parameters was trained, encompassing 26 parameters.
Significant differences were found in retinal vascular parameters across normal, prediabetes, and diabetes groups, including artery diameter (=0.008), fractal dimension (=0.000), vein curvature (=0.003), C-zone artery branching vessel count (=0.049), C-zone vein branching vessel count (=0.041), artery branching angle (=0.005), vein branching angle (=0.001), artery angle asymmetry degree (=0.003), vessel length density (=0.000), and vessel area density (=0.000), totaling 10 parameters.
The deep learning-based model facilitates retinal vascular parameter identification and quantification, revealing significant differences. These parameters exhibit potential as biomarkers for prediabetes and diabetes.
开发一种基于深度学习的视网膜血管自动分割模型,分析和比较不同葡萄糖代谢状态(正常、糖尿病前期、糖尿病)下的参数,并评估人工智能(AI)在图像分割和视网膜血管参数预测糖尿病前期和糖尿病方面的潜力。
使用了来自200名正常个体、200名糖尿病前期患者和200名糖尿病患者的眼底照片(共600只眼睛)。U-Net网络作为视网膜动静脉分割的基础架构。训练了一个视网膜血管参数自动分割和评估系统,涵盖26个参数。
在正常、糖尿病前期和糖尿病组的视网膜血管参数中发现了显著差异,包括动脉直径(=0.008)、分形维数(=0.000)、静脉曲率(=0.003)、C区动脉分支血管计数(=0.049)、C区静脉分支血管计数(=0.041)、动脉分支角度(=0.005)、静脉分支角度(=0.001)、动脉角度不对称度(=0.003)、血管长度密度(=0.000)和血管面积密度(=0.000),共10个参数。
基于深度学习的模型有助于视网膜血管参数的识别和量化,揭示了显著差异。这些参数具有作为糖尿病前期和糖尿病生物标志物的潜力。