Suppr超能文献

基于深度学习视网膜血管分割的认知能力下降的眼部生物标志物。

Ocular biomarkers of cognitive decline based on deep-learning retinal vessel segmentation.

机构信息

Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.

Ping An Healthcare Technology, Beijing, China.

出版信息

BMC Geriatr. 2024 Jan 6;24(1):28. doi: 10.1186/s12877-023-04593-8.

Abstract

BACKGROUND

The current literature shows a strong relationship between retinal neuronal and vascular alterations in dementia. The purpose of the study was to use NFN+ deep learning models to analyze retinal vessel characteristics for cognitive impairment (CI) recognition.

METHODS

We included 908 participants from a community-based cohort followed for over 15 years (the prospective KaiLuan Study) who underwent brain magnetic resonance imaging (MRI) and fundus photography between 2021 and 2022. The cohort consisted of both cognitively healthy individuals (N = 417) and those with cognitive impairment (N = 491). We employed the NFN+ deep learning framework for retinal vessel segmentation and measurement. Associations between Retinal microvascular parameters (RMPs: central retinal arteriolar / venular equivalents, arteriole to venular ratio, fractal dimension) and CI were assessed by Pearson correlation. P < 0.05 was considered statistically significant. The correlation between the CI and RMPs were explored, then the correlation coefficients between CI and RMPs were analyzed. Random Forest nonlinear classification model was used to predict whether one having cognitive decline or not. The assessment criterion was the AUC value derived from the working characteristic curve.

RESULTS

The fractal dimension (FD) and global vein width were significantly correlated with the CI (P < 0.05). Age (0.193), BMI (0.154), global vein width (0.106), retinal vessel FD (0.099), and CRAE (0.098) were the variables in this model that were ranked in order of feature importance. The AUC values of the model were 0.799.

CONCLUSIONS

Establishment of a predictive model based on the extraction of vascular features from fundus images has a high recognizability and predictive power for cognitive function and can be used as a screening method for CI.

摘要

背景

目前的文献表明,痴呆症患者的视网膜神经元和血管改变之间存在很强的关系。本研究旨在使用 NFN+深度学习模型分析视网膜血管特征,以识别认知障碍(CI)。

方法

我们纳入了来自社区为基础队列的 908 名参与者,这些参与者在 2021 年至 2022 年间接受了脑部磁共振成像(MRI)和眼底摄影检查,随访时间超过 15 年(前瞻性 KaiLuan 研究)。队列包括认知健康的个体(N=417)和认知障碍的个体(N=491)。我们使用 NFN+深度学习框架进行视网膜血管分割和测量。通过 Pearson 相关分析评估视网膜微血管参数(RMP:中央视网膜动静脉等效物、动静脉比、分形维数)与 CI 之间的关联。P<0.05 被认为具有统计学意义。我们探讨了 CI 与 RMP 之间的相关性,然后分析了 CI 与 RMP 之间的相关系数。随机森林非线性分类模型用于预测一个人是否有认知下降。评估标准是来自工作特征曲线的 AUC 值。

结果

分形维数(FD)和总静脉宽度与 CI 显著相关(P<0.05)。年龄(0.193)、BMI(0.154)、总静脉宽度(0.106)、视网膜血管 FD(0.099)和 CRAE(0.098)是该模型中按特征重要性排序的变量。该模型的 AUC 值为 0.799。

结论

基于眼底图像血管特征提取建立的预测模型对认知功能具有较高的可识别性和预测能力,可作为 CI 的筛查方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e4b/10770952/e7dc09bb3fdd/12877_2023_4593_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验