Suppr超能文献

极性和氢键对水杨酸根阴离子在乙腈和水中的电子及振动结构的影响:隐式和显式溶剂化方法

The effect of polarity and hydrogen bonding on the electronic and vibrational structure of the salicylate anion in acetonitrile and water: implicit and explicit solvation approaches.

作者信息

Mall Bishen Siddharth, Adhikari Meena, Pokharia Sandeep, Mishra Hirdyesh

机构信息

Department of Physics, Institute of Science, Banaras Hindu University Varanasi 221005 India.

Physics Section, MMV, Department of Physics, Banaras Hindu University Varanasi 221005 India

出版信息

RSC Adv. 2024 Sep 18;14(40):29569-29587. doi: 10.1039/d4ra04606d. eCollection 2024 Sep 12.

Abstract

This study investigates the fluorescence quenching of the salicylate anion in water compared to acetonitrile (ACN) and the stability of its structure in ACN using DFT and TD-DFT methods at the 6-311++G(d,p) basis set. Computational simulations in implicit and explicit environments of ACN and water reveal the effects of solvent polarity and hydrogen bonding on [O-H⋯O] and [O⋯H-O] tautomerization, fluorescence quenching, and the spectral profile of the salicylate anion. Implicit solvation models show a barrier height of approximately 1.9 kcal mol in ACN and 3.6 kcal mol in water for tautomerization in the ground state, with no barrier in the excited state, leading to an ESIPT reaction in both solvents, but only ground state proton transfer in ACN. Simulated absorption spectra for both and forms are similar in both solvents, while the emission spectrum is red-shifted in water. Explicit solvation studies indicate greater stabilization of the salicylate anion in water than in ACN, with a blue shift in absorption and emission spectra and varying oscillator strengths. Solvent molecule positioning affects stabilization in the ground state, but only the structure is stabilized in the excited state. Simulated IR spectra in water show a blue shift in O-H stretching frequency and increased water molecule vibrational frequencies, suggesting non-radiative excitation energy transfer from salicylate ions to water molecules n → σ* intermolecular hydrogen bonding interactions. This mechanism explains the fluorescence quenching observed in water and results align with experimental data, indicating hydrogen-bonded form stabilization both in water and ACN.

摘要

本研究使用密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)方法,在6-311++G(d,p)基组下,研究了水杨酸根阴离子在水中与乙腈(ACN)相比的荧光猝灭以及其在ACN中的结构稳定性。在ACN和水的隐式和显式环境中的计算模拟揭示了溶剂极性和氢键对[O-H⋯O]和[O⋯H-O]互变异构、荧光猝灭以及水杨酸根阴离子光谱轮廓的影响。隐式溶剂化模型显示,在基态下,ACN中互变异构的势垒高度约为1.9 kcal/mol,水中为3.6 kcal/mol,激发态无势垒,导致两种溶剂中均发生激发态质子转移反应(ESIPT),但ACN中仅发生基态质子转移。两种溶剂中,和形式的模拟吸收光谱相似,而发射光谱在水中发生红移。显式溶剂化研究表明,水杨酸根阴离子在水中比在ACN中更稳定,吸收光谱和发射光谱发生蓝移,振子强度也有所不同。溶剂分子的定位影响基态下的稳定性,但激发态下只有结构得到稳定。水中的模拟红外光谱显示O-H伸缩频率发生蓝移,水分子振动频率增加,表明通过n→σ*分子间氢键相互作用,激发能从水杨酸离子非辐射转移到水分子。该机制解释了在水中观察到的荧光猝灭现象,结果与实验数据一致,表明在水和ACN中氢键结合的形式均得到稳定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验