Torodii Daria, Holmes Jacob B, Moutzouri Pinelopi, Nilsson Lill Sten O, Cordova Manuel, Pinon Arthur C, Grohe Kristof, Wegner Sebastian, Putra Okky Dwichandra, Norberg Stefan, Welinder Anette, Schantz Staffan, Emsley Lyndon
Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
National Centre for Computational Design and Discovery of Novel Materials MARVEL, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Faraday Discuss. 2025 Jan 8;255(0):143-158. doi: 10.1039/d4fd00076e.
The recent development of ultra-fast magic-angle spinning (MAS) (>100 kHz) provides new opportunities for structural characterization in solids. Here, we use NMR crystallography to validate the structure of verinurad, a microcrystalline active pharmaceutical ingredient. To do this, we take advantage of H resolution improvement at ultra-fast MAS and use solely H-detected experiments and machine learning methods to assign all the experimental proton and carbon chemical shifts. This framework provides a new tool for elucidating chemical information from crystalline samples with limited sample volume and yields remarkably faster acquisition times compared to C-detected experiments, without the need to employ dynamic nuclear polarization.
超快魔角旋转(MAS)(>100 kHz)技术的最新发展为固体结构表征提供了新机遇。在此,我们利用核磁共振晶体学来验证微晶活性药物成分维立努拉德的结构。为此,我们借助超快MAS下氢分辨率的提高,仅使用氢检测实验和机器学习方法来确定所有实验质子和碳化学位移。该框架为从有限样品体积的晶体样品中阐明化学信息提供了一种新工具,与碳检测实验相比,采集时间显著缩短,且无需采用动态核极化。