Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands.
MRC GIDA, Imperial College London, London, United Kingdom.
Antimicrob Agents Chemother. 2024 Oct 8;68(10):e0091124. doi: 10.1128/aac.00911-24. Epub 2024 Sep 19.
The global epidemic of drug-resistant continues unabated. The initial report on pan-drug resistant (PDR) strains in a hospitalized patient in New York was unprecedented. PDR showed both known and unique mutations in the prominent gene targets of azoles, amphotericin B, echinocandins, and flucytosine. However, the factors that allow to acquire pan-drug resistance are not known. Therefore, we conducted a genomic, transcriptomic, and phenomic analysis to better understand PDR . Among 1,570 genetic variants in drug-resistant , 299 were unique to PDR strains. The whole-genome sequencing results suggested perturbations in genes associated with nucleotide biosynthesis, mRNA processing, and nuclear export of mRNA. Whole transcriptome sequencing of PDR revealed two genes to be significantly differentially expressed-a DNA repair protein and DNA replication-dependent chromatin assembly factor 1. Of 59 novel transcripts, 12 transcripts had no known homology. We observed no fitness defects among multi-drug resistant (MDR) and PDR strains grown in nutrient-deficient or -enriched media at different temperatures. Phenotypic profiling revealed wider adaptability to nitrogenous nutrients and increased utilization of substrates critical in upper glycolysis and tricarboxylic acid cycle. Structural modeling of a 33-amino acid deletion in the gene for uracil phosphoribosyl transferase suggested an alternate route in to generate uracil monophosphate that does not accommodate 5-fluorouracil as a substrate. Overall, we find evidence of metabolic adaptations in MDR and PDR in response to antifungal drug lethality without deleterious fitness costs.
全球耐药性传染病持续肆虐。首例在纽约住院患者中发现的泛耐药(PDR) 菌株的报告前所未有。PDR 在唑类药物、两性霉素 B、棘白菌素和氟胞嘧啶的主要靶基因中表现出已知和独特的突变。然而,导致 获得泛耐药性的因素尚不清楚。因此,我们进行了基因组、转录组和表型分析,以更好地了解 PDR。在耐药性的 1570 种遗传变异中,有 299 种是 PDR 菌株所特有的。全基因组测序结果表明,与核苷酸生物合成、mRNA 处理和 mRNA 核输出相关的基因受到干扰。PDR 的全转录组测序显示两个基因的表达显著不同——一种 DNA 修复蛋白和依赖 DNA 复制的染色质组装因子 1。在 59 个新转录本中,有 12 个转录本没有已知的同源性。我们观察到,在营养缺乏或丰富的不同温度下,多药耐药(MDR)和 PDR 菌株在生长过程中没有出现适应性缺陷。表型分析显示,对含氮营养物质的适应性更强,对在上糖酵解和三羧酸循环中起关键作用的底物的利用率更高。尿嘧啶磷酸核糖转移酶基因中 33 个氨基酸缺失的结构建模表明, 中存在一种替代途径,可以产生不能将 5-氟尿嘧啶作为底物的尿嘧啶单磷酸。总的来说,我们发现 MDR 和 PDR 在对抗抗真菌药物致死性时存在代谢适应的证据,而没有造成有害的适应性成本。