Suppr超能文献

是什么导致了泛耐药性?对所有四类主要抗真菌药物均耐药的临床分离株进行基因组、转录组和表型分析的综合见解。

What makes pan-drug resistant? Integrative insights from genomic, transcriptomic, and phenomic analysis of clinical strains resistant to all four major classes of antifungal drugs.

机构信息

Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands.

MRC GIDA, Imperial College London, London, United Kingdom.

出版信息

Antimicrob Agents Chemother. 2024 Oct 8;68(10):e0091124. doi: 10.1128/aac.00911-24. Epub 2024 Sep 19.

Abstract

The global epidemic of drug-resistant continues unabated. The initial report on pan-drug resistant (PDR) strains in a hospitalized patient in New York was unprecedented. PDR showed both known and unique mutations in the prominent gene targets of azoles, amphotericin B, echinocandins, and flucytosine. However, the factors that allow to acquire pan-drug resistance are not known. Therefore, we conducted a genomic, transcriptomic, and phenomic analysis to better understand PDR . Among 1,570 genetic variants in drug-resistant , 299 were unique to PDR strains. The whole-genome sequencing results suggested perturbations in genes associated with nucleotide biosynthesis, mRNA processing, and nuclear export of mRNA. Whole transcriptome sequencing of PDR revealed two genes to be significantly differentially expressed-a DNA repair protein and DNA replication-dependent chromatin assembly factor 1. Of 59 novel transcripts, 12 transcripts had no known homology. We observed no fitness defects among multi-drug resistant (MDR) and PDR strains grown in nutrient-deficient or -enriched media at different temperatures. Phenotypic profiling revealed wider adaptability to nitrogenous nutrients and increased utilization of substrates critical in upper glycolysis and tricarboxylic acid cycle. Structural modeling of a 33-amino acid deletion in the gene for uracil phosphoribosyl transferase suggested an alternate route in to generate uracil monophosphate that does not accommodate 5-fluorouracil as a substrate. Overall, we find evidence of metabolic adaptations in MDR and PDR in response to antifungal drug lethality without deleterious fitness costs.

摘要

全球耐药性传染病持续肆虐。首例在纽约住院患者中发现的泛耐药(PDR) 菌株的报告前所未有。PDR 在唑类药物、两性霉素 B、棘白菌素和氟胞嘧啶的主要靶基因中表现出已知和独特的突变。然而,导致 获得泛耐药性的因素尚不清楚。因此,我们进行了基因组、转录组和表型分析,以更好地了解 PDR。在耐药性的 1570 种遗传变异中,有 299 种是 PDR 菌株所特有的。全基因组测序结果表明,与核苷酸生物合成、mRNA 处理和 mRNA 核输出相关的基因受到干扰。PDR 的全转录组测序显示两个基因的表达显著不同——一种 DNA 修复蛋白和依赖 DNA 复制的染色质组装因子 1。在 59 个新转录本中,有 12 个转录本没有已知的同源性。我们观察到,在营养缺乏或丰富的不同温度下,多药耐药(MDR)和 PDR 菌株在生长过程中没有出现适应性缺陷。表型分析显示,对含氮营养物质的适应性更强,对在上糖酵解和三羧酸循环中起关键作用的底物的利用率更高。尿嘧啶磷酸核糖转移酶基因中 33 个氨基酸缺失的结构建模表明, 中存在一种替代途径,可以产生不能将 5-氟尿嘧啶作为底物的尿嘧啶单磷酸。总的来说,我们发现 MDR 和 PDR 在对抗抗真菌药物致死性时存在代谢适应的证据,而没有造成有害的适应性成本。

相似文献

4
Molecular characterization of some multidrug resistant Candida Auris in egypt.
Sci Rep. 2025 Feb 10;15(1):4917. doi: 10.1038/s41598-025-88656-3.
5
Emergence of the novel sixth Clade VI in Bangladesh.
Microbiol Spectr. 2024 Jul 2;12(7):e0354023. doi: 10.1128/spectrum.03540-23. Epub 2024 Jun 6.
7
Transcriptomics and Phenotyping Define Genetic Signatures Associated with Echinocandin Resistance in Candida auris.
mBio. 2022 Aug 30;13(4):e0079922. doi: 10.1128/mbio.00799-22. Epub 2022 Aug 15.
8
Rapid evolution of flucytosine resistance in .
mSphere. 2025 Apr 29;10(4):e0097724. doi: 10.1128/msphere.00977-24. Epub 2025 Mar 18.
9
Candida auris Pan-Drug-Resistant to Four Classes of Antifungal Agents.
Antimicrob Agents Chemother. 2022 Jul 19;66(7):e0005322. doi: 10.1128/aac.00053-22. Epub 2022 Jun 30.

引用本文的文献

2
evolution of multi-drug resistance in a patient receiving antifungal treatment.
bioRxiv. 2025 May 14:2025.05.13.653818. doi: 10.1101/2025.05.13.653818.
3
Rapid evolution of flucytosine resistance in .
mSphere. 2025 Apr 29;10(4):e0097724. doi: 10.1128/msphere.00977-24. Epub 2025 Mar 18.
4
Genomics insights of candidiasis: mechanisms of pathogenicity and drug resistance.
Front Microbiol. 2025 Feb 27;16:1531543. doi: 10.3389/fmicb.2025.1531543. eCollection 2025.

本文引用的文献

1
Comparative fitness trade-offs associated with azole resistance in clinical isolates.
Heliyon. 2024 Jun 4;10(12):e32386. doi: 10.1016/j.heliyon.2024.e32386. eCollection 2024 Jun 30.
2
Optimizing the Treatment of Invasive Candidiasis-A Case for Combination Therapy.
Open Forum Infect Dis. 2024 Feb 22;11(6):ofae072. doi: 10.1093/ofid/ofae072. eCollection 2024 Jun.
3
Variability in competitive fitness among environmental and clinical azole-resistant isolates.
mBio. 2024 Apr 10;15(4):e0026324. doi: 10.1128/mbio.00263-24. Epub 2024 Feb 26.
4
High-Throughput Profiling of Candida auris Isolates Reveals Clade-Specific Metabolic Differences.
Microbiol Spectr. 2023 Jun 15;11(3):e0049823. doi: 10.1128/spectrum.00498-23. Epub 2023 Apr 25.
5
Flucytosine and its clinical usage.
Ther Adv Infect Dis. 2023 Apr 5;10:20499361231161387. doi: 10.1177/20499361231161387. eCollection 2023 Jan-Dec.
6
Development and Validation of TaqMan Chemistry Probe-Based Rapid Assay for the Detection of Echinocandin-Resistance in Candida auris.
J Clin Microbiol. 2023 Apr 20;61(4):e0176722. doi: 10.1128/jcm.01767-22. Epub 2023 Mar 28.
7
Worsening Spread of in the United States, 2019 to 2021.
Ann Intern Med. 2023 Apr;176(4):489-495. doi: 10.7326/M22-3469. Epub 2023 Mar 21.
8
The Candida glabrata Parent Strain Trap: How Phenotypic Diversity Affects Metabolic Fitness and Host Interactions.
Microbiol Spectr. 2023 Feb 14;11(1):e0372422. doi: 10.1128/spectrum.03724-22. Epub 2023 Jan 12.
9
Increasing number of cases and outbreaks caused by in the EU/EEA, 2020 to 2021.
Euro Surveill. 2022 Nov;27(46). doi: 10.2807/1560-7917.ES.2022.27.46.2200846.
10
Transcriptomics and Phenotyping Define Genetic Signatures Associated with Echinocandin Resistance in Candida auris.
mBio. 2022 Aug 30;13(4):e0079922. doi: 10.1128/mbio.00799-22. Epub 2022 Aug 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验