Mycology Laboratory, Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA.
Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, New York, USA.
J Clin Microbiol. 2023 Apr 20;61(4):e0176722. doi: 10.1128/jcm.01767-22. Epub 2023 Mar 28.
Candida auris is a multidrug-resistant yeast pathogen causing outbreaks in health care facilities worldwide, and the emergence of echinocandin-resistant C. auris is a concern. Currently used Clinical and Laboratory Standards Institute (CLSI) and commercial antifungal susceptibility tests (AFST) are phenotype-based, slow, and not scalable, limiting their effectiveness in the surveillance of echinocandin-resistant C. auris. The urgent need for accurate and rapid methods of assessment of echinocandin resistance cannot be overstated, as this class of antifungal drugs is preferred for patient management. We report the development and validation of a TaqMan chemistry probe-based fluorescence melt curve analysis (FMCA) following asymmetric polymerase chain reaction (PCR) to assess mutations within the hot spot one (HS1) region of the gene responsible for encoding 1,3-β-d-glucan synthase that is a target for echinocandins. The assay correctly identified F635C, F635Y, F635del, F635S, S639F or S639Y, S639P, and D642H/R645T mutations. Of these mutations, F635S and D642H/R645T were not involved in echinocandin resistance, while the rest were, as confirmed by AFST. Of 31 clinical cases, the predominant mutation conferring echinocandin resistance was S639F/Y (20 cases) followed by S639P (4 cases), F635del (4 cases), F635Y (2 cases), and F635C (1 case). The FMCA assay was highly specific and did not cross-react with closely and distantly related and other yeast and mold species. Structural modeling of the Fks1 protein, its mutants, and docked conformations of three echinocandin drugs suggest a plausible Fks1 binding orientation for echinocandins. These findings lay the groundwork for future evaluations of additional mutations and their impact on the development of drug resistance. The TaqMan chemistry probe-based FMCA would allow rapid, high throughput, and accurate detection of mutations conferring echinocandin resistance in C. auris.
耳念珠菌是一种多药耐药的酵母病原体,导致全球医疗机构爆发感染,而棘白菌素耐药的耳念珠菌的出现令人担忧。目前使用的临床和实验室标准化研究所(CLSI)和商业抗真菌药敏试验(AFST)基于表型,速度较慢,且不可扩展,限制了它们在棘白菌素耐药的耳念珠菌监测中的有效性。准确、快速评估棘白菌素耐药性的方法的迫切需求怎么强调都不为过,因为这类抗真菌药物是患者管理的首选。我们报告了一种基于 TaqMan 化学探针的荧光熔解曲线分析(FMCA)的开发和验证,该方法采用不对称聚合酶链反应(PCR)检测负责编码棘白菌素靶标 1,3-β-d-葡聚糖合酶的基因热点区 1(HS1)内突变。该检测方法正确识别了 F635C、F635Y、F635del、F635S、S639F 或 S639Y、S639P 和 D642H/R645T 突变。其中,F635S 和 D642H/R645T 不涉及棘白菌素耐药性,而其余突变则通过 AFST 得到证实。在 31 例临床病例中,主要的棘白菌素耐药突变是 S639F/Y(20 例),其次是 S639P(4 例)、F635del(4 例)、F635Y(2 例)和 F635C(1 例)。FMCA 检测方法具有高度特异性,不会与密切和远距离相关的酵母和霉菌物种发生交叉反应。Fks1 蛋白及其突变体的结构建模以及三种棘白菌素药物的对接构象表明,棘白菌素与 Fks1 蛋白的结合方向合理。这些发现为进一步评估其他突变及其对耐药性发展的影响奠定了基础。基于 TaqMan 化学探针的 FMCA 可快速、高通量、准确地检测耳念珠菌中赋予棘白菌素耐药性的突变。