Suppr超能文献

视网膜血管分割:一种用于增强视网膜血管通道的伪标签和特征知识蒸馏优化技术。

RetVes segmentation: A pseudo-labeling and feature knowledge distillation optimization technique for retinal vessel channel enhancement.

机构信息

School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.

College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, 610059, Sichuan, China; Sichuan Engineering Technology Research Center for Industrial Internet Intelligent Monitoring and Application, Chengdu University of Technology, Chengdu, 610059, Sichuan, China.

出版信息

Comput Biol Med. 2024 Nov;182:109150. doi: 10.1016/j.compbiomed.2024.109150. Epub 2024 Sep 18.

Abstract

Recent advancements in retinal vessel segmentation, which employ transformer-based and domain-adaptive approaches, show promise in addressing the complexity of ocular diseases such as diabetic retinopathy. However, current algorithms face challenges in effectively accommodating domain-specific variations and limitations of training datasets, which fail to represent real-world conditions comprehensively. Manual inspection by specialists remains time-consuming despite technological progress in medical imaging, underscoring the pressing need for automated and robust segmentation techniques. Additionally, these methods have deficiencies in handling unlabeled target sets, requiring extra preprocessing steps and manual intervention, which hinders their scalability and practical application in clinical settings. This research introduces a novel framework that employs semi-supervised domain adaptation and contrastive pre-training to address these limitations. The proposed model effectively learns from target data by implementing a novel pseudo-labeling approach and feature-based knowledge distillation within a temporal convolutional network (TCN) and extracts robust, domain-independent features. This approach enhances cross-domain adaptation, significantly enhancing the model's versatility and performance in clinical settings. The semi-supervised domain adaptation component overcomes the challenges posed by domain shifts, while pseudo-labeling utilizes the data's inherent structure for enhanced learning, which is particularly beneficial when labeled data is scarce. Evaluated on the DRIVE and CHASE_DB1 datasets, which contain clinical fundus images, the proposed model achieves outstanding performance, with accuracy, sensitivity, specificity, and AUC values of 0.9792, 0.8640, 0.9901, and 0.9868 on DRIVE, and 0.9830, 0.9058, 0.9888, and 0.9950 on CHASE_DB1, respectively, outperforming current state-of-the-art vessel segmentation methods. The partitioning of datasets into training and testing sets ensures thorough validation, while extensive ablation studies with thorough sensitivity analysis of the model's parameters and different percentages of labeled data further validate its robustness.

摘要

近年来,视网膜血管分割技术取得了进展,采用基于变压器和领域自适应的方法,有望解决糖尿病视网膜病变等眼部疾病的复杂性。然而,当前的算法在有效地适应特定领域的变化和训练数据集的限制方面面临挑战,这些数据集未能全面代表实际情况。尽管医学成像技术取得了进步,专家的手动检查仍然很耗时,这突显了对自动化和稳健分割技术的迫切需求。此外,这些方法在处理未标记的目标集方面存在缺陷,需要额外的预处理步骤和人工干预,这阻碍了它们在临床环境中的可扩展性和实际应用。本研究引入了一种新的框架,该框架采用半监督领域自适应和对比预训练来解决这些限制。所提出的模型通过在时间卷积网络(TCN)中实施新的伪标签方法和基于特征的知识蒸馏,有效地从目标数据中学习,并提取稳健的、与领域无关的特征。这种方法增强了跨领域自适应,显著提高了模型在临床环境中的多功能性和性能。半监督领域自适应组件克服了领域转移带来的挑战,而伪标签则利用数据的固有结构进行增强学习,当标记数据稀缺时,这尤其有益。在所评估的包含临床眼底图像的 DRIVE 和 CHASE_DB1 数据集上,所提出的模型取得了卓越的性能,在 DRIVE 上的准确度、敏感度、特异性和 AUC 值分别为 0.9792、0.8640、0.9901 和 0.9868,在 CHASE_DB1 上的准确度、敏感度、特异性和 AUC 值分别为 0.9830、0.9058、0.9888 和 0.9950,优于当前最先进的血管分割方法。将数据集划分为训练集和测试集,以确保彻底验证,并且通过广泛的消融研究,对模型参数和不同比例的标记数据进行了彻底的敏感性分析,进一步验证了其稳健性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验