Suppr超能文献

X-MIL-53(Fe)(X = H、NH、NO)上空气中臭氧分解的机制

Mechanism for airborne ozone decomposition on X-MIL-53(Fe) (X = H, NH, NO).

作者信息

Ma Jiami, Hu Zhixin, Guo Weihong, Ni Cheng, Li Pan, Chen Bosheng, Chen Songhua, Wang Jinlong, Guo Yanbing

机构信息

School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, PR China; Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, Central China Normal University, Wuhan 430079, PR China.

Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, Central China Normal University, Wuhan 430079, PR China.

出版信息

J Hazard Mater. 2024 Dec 5;480:135849. doi: 10.1016/j.jhazmat.2024.135849. Epub 2024 Sep 16.

Abstract

Ground-level ozone (O) pollution poses a significant threat to both ecosystem sustainability and human health. The catalytic decomposition of O presents as a promising technology to address the issues of O pollution. This study undertook the synthesis of various functionalized metal-organic framework (MOF) catalysts (i.e., X-MIL-53(Fe) (X = H, NH, NO)) to delve into the influence of ligand functional groups on skeletal structure and catalytic efficacy, particularly focusing on unraveling the mechanism of O catalytic decomposition under humid conditions. NH-MIL-53(Fe) catalyst achieved complete O decomposition under ambient temperature and high humidity conditions (RH=75 %), exhibiting a reaction rates (mol·m·s) 129 and 10.5 times greater than that of MIL-53(Fe) and NO-MIL-53(Fe). The NH group promotes electron flow within the backbone towards the hydroxyl group (OH) linked to Fe atom. In humid O, HO molecules augment the interaction between O and NH-MIL-53(Fe), and OH is converted to·O after deprotonation, promoting O decomposition. Additionally, leveraging three-dimensional (3D) printing technology, a monolithic catalyst for O decomposition was prepared for application. This study not only advances understanding of the mechanisms underlying O decomposition but also offers practical solutions for addressing O pollution at humid conditions.

摘要

地面臭氧(O)污染对生态系统可持续性和人类健康都构成了重大威胁。臭氧的催化分解是解决臭氧污染问题的一项很有前景的技术。本研究合成了各种功能化金属有机框架(MOF)催化剂(即X-MIL-53(Fe)(X = H、NH、NO)),以深入研究配体官能团对骨架结构和催化效果的影响,特别关注揭示潮湿条件下臭氧催化分解的机制。NH-MIL-53(Fe)催化剂在环境温度和高湿度条件(相对湿度=75%)下实现了臭氧的完全分解,其反应速率(mol·m·s)分别比MIL-53(Fe)和NO-MIL-53(Fe)高129倍和10.5倍。NH基团促进了主链内电子向与铁原子相连的羟基(OH)流动。在潮湿的臭氧中,水分子增强了臭氧与NH-MIL-53(Fe)之间的相互作用,OH去质子化后转化为·O,促进了臭氧的分解。此外,利用三维(3D)打印技术,制备了一种用于臭氧分解的整体式催化剂以供应用。本研究不仅增进了对臭氧分解潜在机制的理解,还为解决潮湿条件下的臭氧污染提供了实际解决方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验