Chai Hao, Hu Jinsong, Zhang Rongmei, Feng Youcheng, Li Haidong, Liu Zhentao, Zhou Chunhui, Wang Xilong
School of Chemical and Blasting Engineering, Analytical and Testing Center, Anhui Province Key Laboratory of Specialty Polymers, Anhui Provincial Institute of Modern Coal Processing Technology, Anhui University of Science and Technology, Huainan 232001, China.
School of Chemical and Blasting Engineering, Analytical and Testing Center, Anhui Province Key Laboratory of Specialty Polymers, Anhui Provincial Institute of Modern Coal Processing Technology, Anhui University of Science and Technology, Huainan 232001, China.
J Colloid Interface Sci. 2025 Jan 15;678(Pt C):261-271. doi: 10.1016/j.jcis.2024.09.130. Epub 2024 Sep 15.
Developing heterogeneous catalysts with exceptional catalytic activity over formic acid (HCOOH, FA) dehydrogenation is imperative to employ FA as an effective hydrogen (H) carrier. In this work, ultrasmall (1.4 nm) and well-dispersed PdIr nanoparticles (NPs) immobilized on amine-functionalized yolk-shell mesoporous silica nanospheres (YSMSNs) with radially oriented mesoporous channels have been synthesized by a co-reduction strategy. The optimized catalyst PdIr/YSMSNs-NH (Pd/Ir molar ratio = 4:1) exhibited a remarkable turnover frequency (TOF) of 5818 h and remarkable stability at 50 °C with the addition of sodium formate (SF), resulting in complete FA conversion and H selectivity, exceeding most of the solid heterogeneous catalysts in previous reports under similar circumstances. Kinetic isotope effect (KIE) exploration indicates the cleavage of the CH bond is regarded as the rate-determining step (RDS) during the FA dehydrogenation process. Such excellent catalytic properties arise from the ultrafine and well-dispersed PdIr NPs supported on the nanosphere support YSMSNs-NH, the electronic synergistic effect of PdIr alloy NPs, and the strong metal-support interaction (MSI) effect between the introduced PdIr NPs and YSMSNs-NH support. This work offers a new paradigm for exploiting the highly effective silica-supported Pd-based heterogeneous catalysts over the dehydrogenation of FA.
开发对甲酸(HCOOH,FA)脱氢具有卓越催化活性的多相催化剂对于将FA用作有效的氢(H)载体至关重要。在这项工作中,通过共还原策略合成了固定在具有径向取向介孔通道的胺官能化蛋黄壳介孔二氧化硅纳米球(YSMSNs)上的超小(1.4纳米)且分散良好的钯铱纳米颗粒(NPs)。优化后的催化剂PdIr/YSMSNs-NH(钯/铱摩尔比 = 4:1)在添加甲酸钠(SF)的情况下,在50°C时表现出5818 h的显著周转频率(TOF)和出色的稳定性,实现了FA的完全转化和H的选择性,超过了先前报道中在类似条件下的大多数固体多相催化剂。动力学同位素效应(KIE)探索表明,CH键的裂解被认为是FA脱氢过程中的速率决定步骤(RDS)。这种优异的催化性能源于负载在纳米球载体YSMSNs-NH上的超细且分散良好的PdIr NPs、PdIr合金NPs的电子协同效应以及引入的PdIr NPs与YSMSNs-NH载体之间的强金属-载体相互作用(MSI)效应。这项工作为开发用于FA脱氢的高效二氧化硅负载钯基多相催化剂提供了新的范例。