Wu Luming, Ni Baoxia, Chen Rui, Shi Chengxiang, Sun Pingchuan, Chen Tiehong
Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University Tianjin 300350 PR China
Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University Tianjin 300071 PR China.
Nanoscale Adv. 2019 Sep 23;1(11):4415-4421. doi: 10.1039/c9na00462a. eCollection 2019 Nov 5.
Ultrafine and highly dispersed PdAu nanoparticles were immobilized on amine functionalized carbon black (VXC-72-NH) for dehydrogenation of formic acid (FA). The introduction of amines is of vital importance for the formation of ultrafine PdAu nanoparticles (∼1.5 nm). Moreover, the presence of the amino groups also increased the electron density of PdAu nanoparticles, and this effect facilitated the formation of metal-formate, which further enhanced the rate of the catalytic dehydrogenation of FA. The as-prepared PdAu/VXC-72-NH exhibited high catalytic activity and 100% H selectivity for dehydrogenation of formic acid without any additive, with turnover frequency (TOF) values of 7385 h at 298 K and 17 724 h at 333 K, which are the highest TOF values ever reported among heterogeneous catalysts for FA dehydrogenation.
将超细且高度分散的钯金纳米颗粒固定在胺功能化炭黑(VXC - 72 - NH)上用于甲酸(FA)脱氢。胺的引入对于形成约1.5纳米的超细钯金纳米颗粒至关重要。此外,氨基的存在还增加了钯金纳米颗粒的电子密度,这种效应促进了金属甲酸盐的形成,进而提高了甲酸催化脱氢的速率。所制备的PdAu/VXC - 72 - NH在无任何添加剂的情况下,对甲酸脱氢表现出高催化活性和100%的氢气选择性,在298 K时的周转频率(TOF)值为7385 h⁻¹,在333 K时为17724 h⁻¹,这是在用于甲酸脱氢的多相催化剂中报道的最高TOF值。