The Plant Chemetics Laboratory, Department of Biology, University of Oxford, UK.
The Plant Chemetics Laboratory, Department of Biology, University of Oxford, UK.
Curr Opin Plant Biol. 2024 Dec;82:102629. doi: 10.1016/j.pbi.2024.102629. Epub 2024 Sep 18.
Plant pathogens represent a critical threat to global agriculture and food security, particularly under the pressures of climate change and reduced agrochemical use. Most plant pathogens initially colonize the extracellular space or apoplast and understanding the host-pathogen interactions that occur here is vital for engineering sustainable disease resistance in crops. Structural biology has played important roles in elucidating molecular mechanisms underpinning plant-pathogen interactions but only few studies have reported structures of extracellular complexes. This article highlights these resolved extracellular complexes by describing the insights gained from the solved structures of complexes consisting of CERK1-chitin, FLS2-flg22-BAK1, RXEG1-XEG1-BAK1 and PGIP2-FpPG. Finally, we discuss the potential of AI-based structure prediction platforms like AlphaFold as an alternative hypothesis generator to rapidly advance our molecular understanding of plant pathology and develop novel strategies to increase crop resilience against disease.
植物病原体是全球农业和粮食安全的重大威胁,特别是在气候变化和减少农用化学品使用的压力下。大多数植物病原体最初定植于细胞外空间或质外体,了解这里发生的宿主-病原体相互作用对于在作物中工程化可持续的抗病性至关重要。结构生物学在阐明植物-病原体相互作用的分子机制方面发挥了重要作用,但只有少数研究报告了细胞外复合物的结构。本文通过描述由包含 CERK1-几丁质、FLS2-flg22-BAK1、RXEG1-XEG1-BAK1 和 PGIP2-FpPG 的复合物的已解决结构获得的见解,突出了这些已解决的细胞外复合物。最后,我们讨论了基于人工智能的结构预测平台(如 AlphaFold)作为替代假设生成器的潜力,以快速推进我们对植物病理学的分子理解并开发提高作物对疾病抗性的新策略。